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Computational models of reinforcement learning (RL) have significantly contributed
to our understanding of human behavior and decision-making. Traditional RL models,
however, often adopt a linear approach to updating reward expectations, potentially
oversimplifying the nuanced relationship between human behavior and rewards. To
address these challenges and explore models of RL, we utilized a method of model
discovery using equation discovery algorithms. This method, currently used mainly
in physics and biology, attempts to capture data by proposing a differential equation
from an array of suggested linear and nonlinear functions. Using this method, we were
able to identify a model of RL which we termed the Quadratic Q-Weighted model.
The model suggests that reward prediction errors obey nonlinear dynamics and exhibit
negativity biases, resulting in an underweighting of reward when expectations are low,
and an overweighting of the absence of reward when expectations are high. We tested the
generalizability of our model by comparing it to classical models used in nine published
studies. Our model surpassed traditional models in predictive accuracy across eight out
of these nine published datasets, demonstrating not only its generalizability but also its
potential to offer insights into the complexities of human learning. This work showcases
the integration of a behavioral task with advanced computational methodologies as a
potent strategy for uncovering the intricate patterns of human cognition, marking a
significant step forward in the development of computational models that are both
interpretable and broadly applicable.

reinforcement learning | dynamical systems | nonlinear modeling | machine learning

Over the past few decades, the social sciences have seen an increasing prevalence of com-
putational cognitive modeling for explaining human behavior (1). Computational models
have had a transformational contribution to a variety of domains, most notably reinforce-
ment learning (RL) (2). RL provides a mathematical framework for understanding how
agents learn and make decisions based on experience with rewards or punishments.
Research on RL has contributed to our understanding of human and animal learning,
including its neuronal underpinnings in the brain (3-7). Insights from RL in the social
sciences have also been adopted in machine learning, contributing to tremendous improve-
ments in facilitating learning in artificial agents (8—10).

Although undoubtedly successful, RL models traditionally update reward expectations
linearly, an assumption that may oversimplify human behavior’s complex relationship
with rewards. Contrary to this linear approach, evidence outside of RL models suggests
that human behavior exhibits a nonlinear response to rewards, with subjective value not
scaling linearly with the reward’s objective size. This is supported by both psychological
and economic theories (11-13), as well as neuroscientific findings, indicating a nonlinear
coding of rewards in the brain (14-17). One of the most studied aspects of this nonlin-
earity is probability weighting, a concept central to decision-making models such as
Cumulative Prospect Theory (CPT; 13). CPT proposes an inverse “S-shaped” weighting
function, in which low probabilities are overweighted and high probabilities are under-
weighted. However, this is only one of many proposed functional forms in behavioral
economics. Alternatives,including those by Prelec (14), Gonzalez and Wu (15), and oth-
ers,have emphasized different curvature properties, parametric flexibility, and psychological
interpretations. Moreover, empirical findings suggest that these distortions differ system-
atically between decision-from-description tasks (used in most CPT work) and
decision-from-experience tasks. The latter often shows reversed or flattened weighting
patterns (e.g., underweighting of rare events), raising questions about the stability of these
effects across contexts (16—-18).

Despite the empirical evidence for nonlinearities in valuation and utility, most RL
models continue to use linear delta-updating rules for learning. The Rescorla—Wagner
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model (19), arguably one of the most influential delta-updating
rules, assumes exactly this: A linear relationship between expecta-
tions and change in response to feedback. Variations of the model
that incorporate decay over time, or asymmetric learning rates for
positive and negative feedback, all share this common assumption
that learning is linear. Prior work has incorporated nonlinear trans-
formations of outcome values,such as risk-sensitive utilities or
probability weighting functions (e.g., refs. 20—22), however these
typically modify the inputs to the prediction error, leaving the
structure of the learning rule itself unchanged. This distinction
between nonlinear inputs and nonlinear updating has important
implications for how models capture learning dynamics and the
emergence of systematic biases.

This underscores a complex problem in model development:
despite their achievements, RL models—and computational models
of social behavior in general—are vulnerable to the biases and lim-
itations of their designers, as they are mostly developed top—down
based on theoretical insights or adapted from historically dominant
models. This is perhaps why canonical RL models struggle to find
a balance between interpretability, parsimony, accuracy, and gener-
alizability across individuals and contexts (23). New models are
being proposed continuously; however, they suffer from many of
the same limitations as the models they aim to replace (24).

Deep learning may come to mind as a suitable alternative to
top—down model development, but comes with its own tradeoffs:
high prediction accuracy at the expense of interpretability and
limited generalization outside training data. Recently, however,
efforts to merge deep learning with traditional models have aimed
at enhancing interpretability and systematic discovery (25-28).
Constraining deep learning within the bounds of theory has
yielded more understandable models (29-32), though their broad
applicability remains unproven. A complementary approach is to
improve existing interpretable models using bottom—up, machine
learning, approaches (33). These methods, while innovative, still
depend on preexisting models and extensive data. To address these
gaps and promote model discovery in the social sciences, we pro-
pose to adopt algorithms designed for data-driven discovery of
nonlinear differential equations in physics and engineering. These
data-driven approaches allow the freedom to explore a vast range
of functional forms in relatively small datasets while constraining
the models to be interpretable.

The notion that dynamic models can be discovered using bot-
tom up approaches received increased attention in recent decades,
especially in physics (34, 35). Early work in this space suffered
from overfitting and required immense computing power.
However, recent developments allow for implementations of bot-
tom—up equation discovery in complex, noisy, and multidimen-
sional systems (36-38), making it well suited for model discovery
in social sciences. Unlike other, more opaque machine learning
approaches, these algorithms generate systems of equations that
researchers can interpret. Users can also predetermine the space
of possible terms that describe the system and control the level of
complexity of the obtained model.

Here, we utilize an equation discovery algorithm, SINDy
(Sparse Identification of Nonlinear Dynamics; 24), to develop
and improve human RL models. SINDy is based on the idea of
sparse regression, seeking to identify a minimal set of ordinary
differential equations that aim to describe the underlying dynam-
ics of a system that produced the observed data (here, the under-
lying cognitive process). It uses a combination of optimization
and feature selection to find the sparse set of candidate functions
through iterative multiple regression, and it can amalgamate a
wide variety of linear and nonlinear terms (see Methods for details).

SINDy has been applied in physics (39, 40), engineering (41, 42),
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and biology (24, 43). An introductory paper suggested its use in
social sciences (44), but it has not been used yet for model devel-
opment with empirical data.

The goal of the current project is to discover models of RL.
We use SINDy to enable testing of multiple RL models without
the biases inherent to traditional top—~down model development.
In phase 1, we designed a simple RL task that allows us to capture
participants’ estimation of a probability of reward across multiple
trials. Using SINDy, we then revealed a model—termed the
Quadratic Q-Weighted model—that introduces unique behav-
ioral insights into how people learn the probability of reward.
This model, in line with probability weighting theories, demon-
strates that participants exhibit a systematic distortion in their
estimation or probability, which is similar to the nonlinear prob-
ability weighting seen in previous decision-making research.
What sets the model apart, however, is its ability to capture a
dynamic transition between S-shaped and inverse S-shaped dis-
tortions, revealing a context-dependent flexibility influenced by
participants’ expectations. In phase 2 we then take the Quadratic
Q-Weighted model and compare its ability to predict reward
data on completely different kinds of tasks involving evaluating
reward in much more complicated situations such as a two-armed
bandit task. We do not use SINDy directly in this phase; rather,
we take the Quadratic Q-Weighted model discovered using our
simple RL task and embed that model within existing models
of more complex decision-making. We demonstrate that the
application of the Quadratic Q-Weighted model achieves better
results than previous state-of-the-art models across eight of nine
public datasets, each published in leading academic journals.
This work therefore makes a two-fold contribution: first, it pro-
vides a proof of concept for utilizing an equation discovery algo-
rithm in the social sciences, enabling the discovery of a RL model
from behavioral data. Second, it introduces a model of human
RL that accounts for probability weighting distortions and
demonstrates its generalization capabilities to more complex
decision-making tasks, thereby unveiling insights into human
cognition.

Results

Phase 1: Equation Discovery from Empirical Probability
Estimates. Our first goal was to determine whether algorithms
discovered by SINDy can provide insights into probabilistic
learning when trained on empirical data from human learners.
To this end, we conducted two empirical studies using a learning
task composed of 100 trials. Participants assumed the role of
an inspector tasked with identifying the rate at which a factory
produces working versus defective phones (Fig. 1). On each of
the 100 trials, participants inspected a new phone produced
by the factory and learned whether it was working or defected.
Participants then reported the probability that the next phone
would be working (see Methods for detailed description). The
true probability of receiving a working phone changed trial-to-
trial according to a Gaussian random walk (SD = 0.1), bounded
between 0.1 and 0.9; the initial value was drawn from a uniform
distribution in the range 0.1 to 0.9. To incentivize accurate
predictions, we offered participants a $0.03 bonus per response
within 5% of the true probability. Attention checks were included
during the task to ensure data quality; participants who did not
pass our criteria for attention checks were excluded from analysis
(Methods).

We ran two versions of the task. In Study 1 (V= 455), we set
the initial probability of a working phone to 0.5. This probability

changed every trial according to a Gaussian random walk with
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Fig. 1. Structure of learning task used in Studies 1 and 2. Participants inspected phones produced from an assembly line. On each trial, a single phone was
revealed to either be working or defective. Following each observation, participants were asked to rate on a scale from 0 to 100% what they thought was the

likelihood of the next phone being a working phone.

SD = 0.025; the random walk was unique for every participant.
We used diffusion in the true reward rate in order to keep partic-
ipants engaged with the task, as done in similar tasks (45-47).

In Study 2 (N = 177), the task was the same as in Study 1 except
for two modifications. First, the initial value of the true probability
of a working phone was randomly drawn from a uniform distribu-
tion (0.1, 0.9) rather than being fixed at 0.5. Second, we increased
the SD of the random walk from 0.025 to 0.1. The purpose of these
modifications was to explore how SINDy performed across a broad
range of task parameters. Neither Studies 1 or 2 were preregistered
and all analyses should be considered exploratory.

We trained SINDy using data from all participants who met our
inclusion criteria (see Methods for exclusions), separately for each
study. Input data provided to SINDy were limited to participants’
reported expectations of observing a working phone Q,, their obser-
vations of whether a phone was working or defective 7,, and trial
number # We also provided SINDy with a matrix of candidate
functions for feature selection, allowing for a variety of models to
be identified. These included identity functions for previous expec-
tations and reward, time-dependent decaying functions, and expo-
nential functions for nonlinearity (see Methods for specifics on
candidate functions and fitting procedure). Consequentially, the
Rescorla—Wagner model could be discovered by SINDy if it best
explained the empirical data from either study. This was ensured
through a series of simulation studies (Simulations).

For Study 1, SINDy discovered the following model (R* =
0.204):

Q1 =0.117, — 0.24Q,%.

For Study 2, SINDy discovered a near identical model (R* =
0.196):

Q.41 =0.107, — 0.17Q,%.

To demonstrate that these models were superior in fit to the
Rescorla—Wagner model, we separately trained SINDy with a
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smaller matrix of candidate features limited to only the 7 Q term.
This limited SINDy to only discover the Rescorla—Wagner model.
These limitations 2yielded worse fit in both studies (Study 1 R* =
0.144; Study 2 R™ = 0.174).

Note that the coefficients of the discovered models’ parameters
are not symbolic and are fixed across participants. In both studies,
SINDy discovered models of identical form, albeit with slightly
different numerical values. We termed the model that SINDy
produced the Quadratic Q-Weighted model since the model
includes a quadratic term on previous expectation rather than a
linear one (hence “Quadratic”) and the model includes unequal
scaling coeflicients for present reward and previous expectation
(Q-value; hence “Q-Weighted”). The Quadratic Q-Weighted
model accounts for several interesting behavioral phenomena dis-
cussed in the results. Most importantly, the functional form of
the Quadratic Q-Weighted model leads to an asymptotic bias in
the estimation of the true probability. Namely, the model implies
that over the long term, participants tend to underestimate Q
values when reward probability is high and tend to overestimate
Q values and reward probability is low. The transition between
under- and overestimation happens approximately when the true
probability of reward is equal to a/b where

Qi =ar, = bQ,*.

Fig. 2 illustrates why the Quadratic Q-Weighted model implies
such over/under estimation, showing the change in Q) as a function
of either reward or no-reward and as dependent on previous Q
(see SI Appendix for a proof of this point of under-to-over estima-
tion). For low values of Q, the change in Q in the Quadratic
Q-Weighted model is positively shifted both for reward and no
reward compared to classic Rescorla—Wagner when Q values are
low. Conversely, for high values of Q, the change in Q in the
Quadratic Q-Weighted model is negatively shifted both for reward
and no reward compared to classic Rescorla—Wagner when Q
values are high. Since the Rescorla—Wagner model asymptotically
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Fig. 2. An overview of behavior of the Quadratic Q-Weighted model we discovered using empirical data with SINDy. The x-axes reflect reported Q value and
the y-axes are the median change in value. Gray dots show binned Q into 10 discrete categories, each with a bin size of 0.1. Categories were labeled with the
upper bound of each bin. Error bars are 95% CI. (A) Study 1 empirical change in Q following no reward. (B) Study 1 empirical change in Q following reward. (C)
Study 2 empirical change in Q following no reward. (D) Study 2 empirical change in Q following reward. Predicted changes in Q according to the best fit Quadratic
Q-Weighted model (solid red) and the best fit Rescorla-Wagner model (dashed blue) are overlaid.

always converges to the true probability for any learning rate (48),
the shifts shown in Fig. 2 demonstrate that the Quadratic
Q-Weighted model implies the asymptotic bias in the estimation
of the true probability. One example of the underestimation is
that within this model an agent cannot predict Q values larger
than the stable point W even when the reward probability is
1—this is where expectations stabilize. Noisy agents, like humans,
can occasionally predict Q values larger than \/m , but thereafter
will be biased to lower their expectations back toward \/a/_b even
if met with further reward.

To further explore the implications of the Quadratic Q-Weighted
model on participants’ behavior, we employed linear mixed effects
models to predict changes in expectations as a function of reward
and distance from the stable point \/m . We conducted a total of
four models; two for each study, one of which included only pos-
treward trials and the other post-nonreward trials. The independent
variable in each of the models was whether the current Q value was

lower or higher than the stable pointy/2/ 6. The dependent variable
was change in Q from previous trial. We dummy coded the model

such that the data above the stable point would be the intercept of
the model. This allowed us to not only compare significance

between the conditions (above or below v/a/5), but also compare

results from above the stable point to zero. Our model also included
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a random variable of participant id. Starting with the intercept of
the model, which compared the above the stable point results to
zero, results suggested that in both Study 1 and Study 2, when
receiving a reward and when they were above the stable point,
participants significantly lowered their estimation of Q (Fig. 3
Orange bar compared to 0; Study 1: b = -0.167, 2 < 0.001; Study
2:b=-0.085, P < 0.001). These results would not have been seen
if participants were using a classical Rescorla—Wagner model in
which participants always increase their estimation of Q following
a reward. Similar results were found in cases where there was no
reward, such that when above the stable point, participants also
significantly lowered their estimation of Q (Fig. 3 Orange bar com-
pared to 0; Study 1: b = -0.291, P < 0.001; Study 2: b = -0.328,
P <0.001). These results should be expected, as both in our model
and in a classic Rescorla—Wagner model, participants would lower
their estimation of Q following a no-reward. Having established
this difference from zero, results also suggested that in all cases,
there was a significant difference in change in Q as a function of
whether the previous Q was above or below the stable point (Study
1 Rewarded: b = 0.320, < 0.001; Study 1 Unrewarded: b = 0.341,
P < 0.001; Study 2 Rewarded: b = 0.223, P < 0.001; Study 2
Unrewarded: b = 0.337, P < 0.001). These results are congruent
with Rescorla—Wagner.

Building on these findings, we next employed a complementary
approach to balance the discovery of generalizable learning
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Fig. 3. Empirical changes in expectation Q as a function of Q's position relative to the stable point (1/a/b) and reward. Error bars are 95% Cl. 10% of observations
are included as dots to visualize the response distribution. Decreases in Q can be observed when Q is greater than the stable point, even following reward.

dynamics with the need to capture individual variability. Although
the analysis conducted with the SINDy algorithm allowed us to
identify the core functional form of a learning model by pooling
data across participants, we recognize that pooling data in this
way can obscure meaningful individual differences. To address
this possibility, we next used the probabilistic programming lan-
guage Stan (49) for individual-level model fitting, allowing us to
assess the generalizability of the model and estimate participant-
specific parameters. This also allowed us to validate the Quadratic
Q-Weighted model’s performance by comparing it against other
existing models. Specifically, we fit five competing nonhierarchical
models to each subject from our empirical data using Stan (see
SI Appendix for model specifications and fitting procedures). These
models included: a classic Rescorla—Wagner model (2), a Rescorla—
Wagner model with time-dependent exponential decay (2), a
Rescorla—Wagner model with asymmetric learning rates (41-44),
a binary Kalman filter model (50), and SINDy’s discovered model,
the Quadratic Q-Weighted model. We chose to add a binary
Kalman filter model to the analysis, despite the fact that it takes
latent variables that cannot be discovered by SINDy, to get a sense
of how the model compares to such modern models that include
prediction uncertainty. We compared the relative fits of models
using the Bayesian information criterion (BIC), which penalizes
more complex models for the number of free parameters they
include. The resulting BICs revealed that the Quadratic
Q-Weighted model outperformed all alternative models
(81 Appendix). A comparison of fits across models is visualized for
a representative participant in Fig. 4. These results at the individual
participant-level support our prior group-level analyses conducted
with the support of SINDy: Participants’ behavior in making
probabilistic inference in our study is best explained by a SINDy
discovered RL algorithm, the Quadratic Q-Weighted model.
Having established the Quadratic Q-Weighted model’s superior
fit at both the group and individual levels, we next examined the
distribution of individualized parameters to explore the extent of
heterogeneity in participants’ learning behavior. Beyond the superior
group-level fit indicated by BIC, we also find at the individual-level
that the Quadratic Q-Weighted model best fit 68.35% of partici-
pants in Study 1, and 64.41% in Study 2. Importantly, the a and b
coefficients scaling the reward and Q terms (Q,4, = ar, — Q,?)
were free to vary between participants in these fitted models. This
revealed substantial heterogeneity among individuals around the
group coeflicient values discovered by SINDy: Study 1 mean a =
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0.21 +0.18, Study 1 mean b = 0.45 + 0.46; Study 2 mean a = 0.28
+0.19, Study 2 mean b = 0.61 = 0.52. These findings suggest signif-
icant individual differences in how participants weigh recent rewards
and adjust for previous estimates.

To further probe this variability, we allowed the exponent on
Q to vary freely as an exploratory follow-up. This adjustment
improved the model fit for 61.1% of participants in Study 1 and
77.96% in Study 2, indicating that the fixed exponent of 2 used
in the original Quadratic Q-Weighted model does not fully cap-
ture all individual differences. These individualized exponents were
estimated to be on average 1.52 + 0.76 in Study 1 and 1.43 + 0.81
in Study 2, indicating a high degree of variability among individ-
uals in how they update expectations.

Phase 2: Evaluating Decision Models by assuming the Quadratic
Q-Weighted Model in Existing Datasets. After finding the
Quadratic Q-Weighted model with empirical data, we aimed
to demonstrate its value by reanalyzing prior studies of choice
behavior. Our goal was to determine whether the Quadratic
Q-Weighted model provided a better account of learning in
decision-making tasks than does the Rescorla—Wagner model. This
reanalysis also provided an opportunity to evaluate the models
performance in studies that did not overtly measure participants’
expectations—a vast majority of decision-making tasks do not
probe estimates of probability overtly; they instead ask participants
to act on implicit learned probabilities by selecting between two
or more alternatives. Researchers are often most interested in
the elements governing these selections, such as explore-exploit
tendencies and stochasticity. However, because it is assumed that
selection depends on one’s estimates of reward probability, it is
critical that researchers assume a learning model that best captures
those estimates and their dynamics. To this end, we reanalyzed
open datasets sourced from nine papers published in leading
academic journals, each using the Rescorla—Wagner updating rule
nested within larger decision models, with the goal of replacing
that rule with our Quadratic Q-Weighted model. In each of the
datasets, we used the authors’ original analysis scripts for model
fitting (see ST Appendix for details). To compare the authors’ model
and our variation with the Quadratic Q-Weighted model as a
learning rule, we modified the original authors™ scripts to fit a
variation of their model using the general form of the Quadratic
Q-Weighted model in place of Rescorla—Wagner. Notice that the
model produced by SINDy in the empirical phase had a specific
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Fig. 4. Expected value estimates (Q,) over 100 trials for a single representative participant. The “Empirical” panel represents the participant's reported values
(black lines), while the remaining panels depict predictions (red lines) from models: RW (Rescorla-Wagner), RW with exponential decay, RW with asymmetric
learning rates, QQW (Quadratic Q-Weighted), and the Kalman Filter. Missing data correspond to trials where attention checks were administered. Although all
models demonstrate a generally good fit to the observed data, the QQW model stands out with a superior fit.

coefficient value for each term. In these analyses, we allowed those
coeflicients to vary freely between subjects.

To compare the model that was used in each paper to our Quadratic
Q-Weighted model we calculated the BIC of both models using the
summed likelihood estimates of each participant’s data. BIC was cho-
sen due to its consistency in identifying parsimonious yet well-fitting
models by penalizing more heavily for superfluous parameterization.
Likewise, BIC was used by all authors of the selected datasets. In all
but one dataset, the model using the Quadratic Q-Weighted learning
rule outperformed the original best model (Table 1).

Table 1. Model fits from each reanalyzed datasets us-
ing original authors’ models and variations replacing
Rescorla-Wagner learning rules with the Quadratic Q-
Weighted model

Quadratic
Original BIC ~ Q-Weighted BIC
Kool et al. 2017 Experiment 1 461.35 458.47
Kool et al. 2017 Experiment 2 474.32 450.23
Lefebvre et al. 2017 3857.55 3806.44
Experiment 1
Lefebvre et al. 2017 2512.77 2496.62
Experiment 2
Palminteri et al. 2017 3206.48 3199.18
Experiment 1
Chambon et al. 2020 10987.38 10997.49
Experiment 4
Decker et al. 2016 37463.96 36956.91
Potter et al. 2017 25784.64 25373.13
Nussenbaum et al. 2020 63378.57 62360.65

Note: BIC is Bayesian Information Criterion. Lower BIC reflects better model fit. Original
BIC is for the model used by the authors of the dataset. Quadratic Q-weighted BIC is for
the variation of those models using the Quadratic Q-Weighted model as a nested learning
rule in place of the Rescorla-Wagner learning rule.

https://doi.org/10.1073/pnas.2413441122

Beyond fit, models using the Quadratic Q-Weighted learning rule
may provide downstream benefits to understanding processes of
decision-making. For example, one dataset in particular, Kool et al.,
2017 Experiment 2 (51), the Quadratic Q-Weighted model yielded
decision-making parameter estimates that diverged from the authors’
main findings. In their 2017 article, Kool and colleagues (51) pro-
posed that arbitration between model-based (MB) and model-free
(MF) learning systems involves a cost-benefit analysis. The MB
system, which plans toward goals, is more accurate but computa-
tionally demanding, whereas the MF system relies on habits and is
computationally efficient but less flexible. Kool et al. suggested that
people decide which system to use by weighing the benefits of the
MB system’s accuracy against its cognitive cost. This implies that MB
control is employed when its benefits (in terms of reward) outweigh
the costs (in terms of cognitive effort).

The most common method for measuring individual difference
in this cost—benefit analysis is with the Two-Step Task (52), a com-
plex, multistep decision-making task. Despite this, Kool etal.
demonstrated in an earlier paper (53) that there exists no cost-benefit
relationship between model-based vs. model-free strategy and per-
formance on the task, and remediate this with a novel version of the
task. To explore this further, they tested the effect of monetary stakes
on strategy use in the original task, positing that high stakes should
fail to yield increased MB control when it provides no advantage.
They tested this by fitting a dual-systems RL model to their data
(52). This RL model includes three separate Rescorla—Wagner updat-
ing rules for changing participants’ expectations of reward followed
by choosing specific spaceships and aliens. They found that there
was no difference in MB control between high and low stakes on
the original version of the task (Experiment 2; t(99) = 0.4132,
P =0.6804). In interpreting these findings, the authors suggest that
participants might have a prior belief that MB control is generally
associated with higher rewards, driven by real-world experiences where
MB control is usually beneficial. This belief, reinforced by training,
led participants to maintain a mix of MB and MF strategies.
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We disagreed with this conclusion: if MB control is no better than
MF on the original version of the task, participants should use MB
control /ess than MF under high stakes. This is because high stakes
can be stressful and impose cognitive load. MB control is costlier,
despite it being equally as effective in this case, and the cognitive
effort required to use MB control could be too demanding in high
stakes situations. It is possible that parameter estimates could be
improved and better reflect our hypothesized effect if a learning
model were fit to the data which better reflects peoples’ true learning.
To test this, we modified the fitted dual systems RL model to instead
use the Quadratic Q-Weighted model discovered by SINDy in our
empirical studies. We found that our version of the dual systems
model with the Quadratic Q-Weighted model as a learning rule
better fit Kool et al.’s Experiment 2 data (BICqqy = 450.23) than
the original dual systems RL model (BICyy, = 474.32). Furthermore,
we observed that the fitted free parameters for the MB weight in
high stakes was indeed significantly less than the MB weight in low
stakes (t(99) = 2.9303, P = 0.0042), supporting our hypothesis.

Discussion

In this work, we demonstrated that bottom—up equation discovery
algorithms can be used for model development in social sciences.
We collected empirical data in two variations of a learning task
and used SINDy to develop an appropriate model for participants’
behavior. This model—the Quadratic Q-Weighted model—pro-
vided insights into human learning and accounts for several inter-
esting behavioral phenomena. Most importantly, the model
introduces a tendency over the long term to underestimate Q
values when true reward rates are high and overestimate Q values
and true reward rates are low. Finally, we nested the Quadratic
Q-Weighted model within existing, more complex decision mod-
els used by the authors of nine published datasets. These models
notably were of decisions made on complex decision-making tasks,
entirely different from our probability estimation task. We found
that the revised models using our Quadratic Q-Weighted model
instead of the Rescorla—Wagner updating rule provided a better
fit in eight out of nine of those cases compared to the models
originally used by the authors. We further demonstrate that the
Quadratic Q-Weighted model does more than simply improve
fit; it impacted the conclusions and interpretation of a previous
study of complex decision-making. These results provide a prom-
ising path for the use of the Quadratic Q-Weighted model, as well
as the use of equation discovery algorithms to development of
interpretable but more predictive computational models.

Across multiple levels of analysis, what stands out as the most
important feature of the Quadratic Q-Weighted model is its pre-
diction that participants tend to overestimate low probabilities and
underestimate high probabilities. This systematic bias may reflect
the influence of persistent prior beliefs, consistent with Bayesian
frameworks of inference (54, 55). In Bayesian models, a prior rep-
resents the learner’s initial beliefs about the probability distribution
of an outcome. If individuals maintain a strong prior centered
around a moderate probability value (e.g., 0.5), subsequent learn-
ing will appear conservative, pulling extreme probabilities toward
the center. This behavior is qualitatively similar to the effects pro-
duced by the quadratic term in our model, which attenuates
updates as expectations approach the extremes of 0 and 1.

Recent work by Zhu etal. (56, 57) provides a compelling
process-level account of such biases. Their Bayesian Sampler and
Autocorrelated Bayesian Sampler models explain how cognitive
constraints, such as limited sampling and autocorrelated internal
states, can produce systematically biased probability estimates even
when agents perform rational inference over time. These models
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show that conservatism and subadditivity can arise naturally from
the sampling process, particularly when prior beliefs are strong
and sampling is limited. While our model does not explicitly
implement Bayesian sampling, it captures a similar behavioral
signature: an asymptotic bias that emerges as participants anchor
expectations toward intermediate values regardless of the observed
evidence. This convergence raises interesting questions about
whether the quadratic term in our model reflects a heuristic
approximation of Bayesian updating or an internalized bias shaped
by experience. Notably, we observe this pattern in both our empir-
ical studies, including Study 2 where initial reward probabilities
varied. Future work could directly compare the Quadratic
Q-Weighted model to Bayesian sampling models, particularly
under conditions that manipulate priors or restrict cognitive
resources, to better understand the origins of such nonlinear
updating dynamics.

While the current work focused on model development within
RL, we envision many exciting new directions for model devel-
opment in various social domains. Many subdomains in social
sciences are still utilizing existing top—down models and these
models can potentially be improved while maintaining interpret-
ability. For example, models of social contagion, such the SIR
epidemic models (58), which already benefit from further devel-
opment using tools such as SINDy (24), can also be tested in
explaining social interaction and contagion. Other domains such
as decision making (59), planning (60), norm formation (61),
affect (62), and many others all have models that are constantly
being developed using top—down approaches, and these domains
could potentially benefit from using equation discovery algorithms
for model improvement and development. Finally, many domains
in the social sciences involve analysis of longitudinal data, which
is often analyzed using structural equation modeling or other tools
that mostly test for linear processes (63). SINDy and other equa-
tion discovery tools are well suited to fit existing longitudinal data
in order to uncover driving equations. It is important to note that
we do not wish to eliminate hypothesis testing or theory-based
models, but rather to expand the modeler’s toolbox in considering
alternative models for comparison and later confirmatory analyses,
thus encouraging the discovery of novel, interpretable, predictive,
and generalizable models.

Limitations and Future Directions

We acknowledge several limitations in using SINDy for model
discovery in social science. First, our implementation is at present
limited to modeling directly observable data. Across our empirical
studies, Q-value was an explicit variable. In many RL experiments,
expected value is a latent variable that is estimated from directly
observable decisions (54, 64). Other models could include these
latent variables, such as for uncertainty in expectations, which
could potentially improve their quality in terms of predictability
and generalizability. Despite these limitations, the approach we
adopted here has the potential to change how models are devel-
oped in the social science.

A second limitation is that the SINDy algorithm is bounded
by the specific decisions made in its implementation, such as the
list of candidate functions and hyperparameters that govern the
discovered model’s sparsity (and hence control over its complex-
ity). These decisions, as well as the indication of whether the dis-
covered model is suitable, are subjective. Therefore, it is possible
that there may exist other alternative models which could be better
fitting. For example, the present study omitted candidate func-
tions of continuous time. Although our discovered Quadratic
Q-Weighted model provides a unique perspective on probability
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weighting, it departs from the broader theoretical basis of RL
models like Temporal Difference (TD) learning (2), which can be
applied in real-time and have demonstrated strong links to learn-
ing processes in the brain (48, 65). The quadratic transform used
here, although beneficial for capturing nonlinearity in probability
estimates, does not provide the same foundation for understanding
learning as a general, time-continuous process. However, it may
be possible to incorporate the discovered nonlinearity within a
TD learning framework. Specifically, future work could modify
the TD update equations to include a transformed value function,
such as f(V)=V + V2, allowing us to retain the incremental,
time-based learning properties of TD while introducing systematic
biases that capture nonlinearities in human learning behavior. This
would create a hybrid model that not only improves predictive
performance but also preserves the dynamic learning structure of
TD, potentially bridging these two perspectives effectively.

A third limitation of this study is that the model that was dis-
covered by SINDy was based on a relatively narrow empirical task.
Although the Quadratic Q-Weighted model showed excellent
generalizability in predicting behavior across two new empirical
studies and eight of nine reanalyzed datasets, its broader applica-
bility requires further exploration. One notable exception to the
Quadratic Q-Weighted model’s superior performance was
observed in a go/no-go dataset (66), where the Rescorla—Wagner
model provided a better fit to the underlying learning process. We
note that this dataset’s structure—featuring a large number of
trials per participant (V= 600) but a small number of participants
(N = 20)—may have reduced its ability to robustly differentiate
between models. However, the unique demands of go/no-go tasks,
which rely heavily on inhibitory control, may inherently favor
simpler models like Rescorla—Wagner. Unlike the other datasets
analyzed, the go/no-go task may not highlight the nuanced
reward—probability interactions or asymptotic behaviors that the
Quadratic Q-Weighted model captures well. Moreover, the can-
didate features that we provided to SINDy for modeling learning
in forced-choice tasks may not adequately capture learning
dynamics unique to go/no-go tasks. These findings may suggest
that tailoring candidate functions to task-specific dynamics is cru-
cial for improving the generalizability and performance of discov-
ered models.

Although it may be necessary to tailor models to task-specific
dynamics, perhaps like those of the go/no-go task, it is equally as
valuable that models generalize across a wider range of decision-
making contexts. Importantly, we did show in our empirical studies
that the identified Quadratic Q-Weighted model was robust to
changes in initial reward probability and to varying levels of diffu-
sion noise. However, the model’s utility in tasks where reward prob-
abilities remain static over time or where probabilities are more
conservatively bounded has yet to be tested. Future studies could
further evaluate the model under these conditions, such as the
change-point detection studies conducted by Nassar and colleagues
(67, 68), where participants are asked to predict continuously var-
ying outcomes. These tasks involve different reward structures that
could help determine whether the nonlinearity identified in our
model captures more general aspects of human learning, particularly
under conditions of uncertainty and dynamically changing envi-
ronments. Future research should extend the model to such
decision-making problems and explore additional nonlinearities,
such as exponential or logarithmic transformations.

Itis also important that future research consider edge cases. An
important aspect of the Quadratic Q-Weighted model is its pre-
diction of asymptotic behavior, particularly in situations where
the model suggests an inherent bias in how individuals estimate
extreme probabilities. Specifically, the model predicts that
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participants cannot estimate QQ values beyond a certain stable
point (V(a/b)), even in situations where the true reward probabil-
ity is maximal (e.g., 1). This creates an opportunity for empirical
validation, whereby edge cases can be specifically designed to test
these predictions. For example, future experiments could involve
a prolonged sequence of trials with a constant reward probability
of 1 to determine whether participants’ estimates truly converge
at the stable point predicted by the model or if they adaptively
reach the true value. If participants are found to be limited by this
predicted asymptotic bias, it would lend further support to the
model’s validity. Conversely, if participants adapt beyond the pre-
dicted stable point, it may indicate the need for further refinement
of the model. Such empirical tests would help to identify the
conditions under which the model captures or fails to capture
human learning behavior and highlight the importance of under-
standing model limitations within different RL environments.
That said, we acknowledge that the model may fail to predict
behavior under such rigid conditions. Although future studies
have the potential to further validate the Quadratic Q-Weighted
model, we suggest that the model’s scope be interpreted with the
constraints of the learning environment in mind.

Finally, a fourth limitation concerns the interpretation of
nonlinearity in the Quadratic Q-Weighted model. Specifically, our
formulation embeds nonlinearity directly in the updating rule—
Q.41 = ar, — bQ,*—rather than in a utility transformation of out-
comes prior to updating. While this structure captures
state-dependent prediction errors, it differs computationally from
models that apply a nonlinear utility function to feedback, such as
Q.41 = au(r,) — bQ,, where u(r,) might be quadratic. These two
sources of nonlinearity reflect distinct psychological mechanisms:
Utility curvature implies preferences over outcomes, while nonlinear
updating implies that learning itself is biased or distorted based on
prior expectations. Moreover, they make different predictions for
learning. For example, nonlinear updating can produce attraction
to stable points—values of Q where learning effectively ceases—
whereas nonlinear utility does not predict such asymptotic behavior,
as it preserves linear dependence on the current value estimate. That
said, empirically distinguishing between these mechanisms is diffi-
cult within the current scope, as reward magnitudes in all of our
studies (and those we reanalyzed) are discrete (either 0/1 or -1/1).
Detecting utility curvature robustly would likely require tasks with
continuous or graded rewards. While distortions akin to nonlinear
udility (e.g., asymmetric weighting of 0 vs. 1 s) may partially be
captured by the Quadratic Q-Weighted model’s separate terms for
reward and Qtz, this approach cannot model all plausible forms of
utility transformation (e.g., inflation of 0 s). We therefore leave the
question of disentangling nonlinear utility from nonlinear updating
to future work. Promising directions include experimental designs
using continuous outcomes and simulation-based model recovery
studies that systematically vary utility and update structures in fac-
torial combinations.

Overall, this study demonstrates the potential of bottom—up
equation discovery methods, such as SINDy, to advance model
development in the social sciences. The Quadratic Q-Weighted
model provides key insights into human learning, uncovering
systematic biases in probability estimation and generalizing across
diverse datasets. By improving fit and influencing interpretations
of prior studies, the model showcases the power of integrating
nonlinear dynamics into decision-making frameworks. More
broadly, this work highlights how data-driven discovery can com-
plement theory-driven approaches, offering a path toward more
interpretable and predictive models that deepen our understand-
ing of human behavior.
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Methods

Explaining SINDy. For ouranalysis, we used PySINDy (69, 70), a Python package
that provides tools for applying the SINDy algorithm (71) for model discovery.
SINDy is used to approximate the unknown governing equations of a dynamical
system using a sparse regression framework. It assumes that the dynamics can
be expressed as a sum of known functions, multiplied by unknown coefficients.
By leveraging sparsity-promoting techniques, SINDy aims to identify the most
relevant terms in the equation, effectively providing a parsimonious representa-
tion of the system’s behavior. Typically, SINDy estimates derivatives for system
variables of the following form:
dX
=0 U)B,

where X is a matrix of observed variables to be modeled, U is a matrix of control
variables that are not to be modeled but may be important for modeling vari-
ablesin X, 6(X, U) is a matrix of candidate features selected by the researcher
that transform the data, and B is a vector of coefficients that scale the candidate
features. Through sparsification techniques such as L2 ridge regression, most of
these coefficients are reduced to zero and only the most predictive features remain
(see below for details on how we chose to promote sparsity). The objective of the
SINDy algorithm is to solve for B given the researcher selected candidate features
and the approximated first-Order derivatives of the observed data.

For most experiments in the social sciences, observed data are collected in
discrete trials. Therefore, we used SINDy to estimate discrete-time models of
the form:

X1 = Fx ),

where x, are the observed variables to be modeled from X attimepointk, and
uy are the control variables (such as rand t in this case) at timepoint k. Rather
than calculating a system of derivatives, using SINDy we calculated a matrix X'
where the columns of X' are measures of x moved forward in time until the final
datapointattimeK(i.e., [y, X,, X3, --+, X¢]. With this approach, SINDy estimates
discrete-time equations for system variables in the form:

X' =0X,U)B.

We solve for B by using a variation of stepwise sparse regression (SSR) (72) to
minimize the objective function:

I X = 0(Xi U )by 115 + A 11 by 113,

where each element of the coefficient vector B is regularized with the L2 ridge
regression value A in the penalty term. We chose A = 0.2 for all analyses (simu-
lations and empirical data). Selecting the value of Ais crucial as it determines the
trade-off between accuracy and parsimony; itis a hyperparameter that should be
tuned by the modeler. On each iteration of the minimization procedure, SINDy
first solves a standard least square regression to obtain a tentative, nonsparse
solution b:

b = argmin || X', — 0(X,, Uy )b 113

by e RK

All possible b are considered, each with one coefficient set to zero, and the solu-
tion b with the smallest residual error is selected. Least-squares regression is then
again performed on the remaining degrees of freedom. This process continues
until there is only one coefficient remaining. Next, we iterate in reverse order
over the history of solutions starting from the simplest solution where all but
one coefficient is set to 0. We continue to add non-0 coefficients back to the
model until the next change in residual error is less than 0.05 times the previous
iteration’s residual error, at which point the process terminates, providing a sparse
solution vector B.This provides a solution that is most parsimonious with the least
loss. Like 4, this multiplier of 0.05 is also a hyperparameter and can be tuned
to select a sparsity level for the solution that neither under- or overfits the data.

simulations. The first step of any SINDy analysis is collecting or simulating data
to populate the time-series observational data X and U.To investigate the appli-
cability of SINDy in recovering the governing equations of established RLmodels,
we generated synthetic data through simulations. We selected well-known RL
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models-the Rescorla-Wagner model and variants—as the basis for generating the
data. See S Appendix, Equation Recovery from Simulated Data for details. Our
simulated agents estimated the probability of reward as X. The history of reward
and trial number were represented as separate columns in U. From these obser-
vations, we used SINDy to calculate X' as the matrix of discrete-time variables
%, shifted x,.,.1. To ensure that SINDy's solution B was interpretable, we provided
SINDy with the following matrix of candidate functions:

oX.U)= [OJ,L02,t2,0><r,0><t,r><t, _1_ e, e m ]

t+100
_t o Q Oxe 5 Oxe- 5 Oxe 5 —" | O|| 02|
@0, ——,0%xe"30,0xe"0,0xe 0, ——, |r=0Q|, [r—
t+100 t+100
_t L ot L L L
[u-rxe W,rXe W, rxe 1, EXeTI, X XeTW, txe T ]
t+100

These functions were chosen since they provide necessary components to allow
SINDy to discover existing theories of learning. Of course, SINDy can also find
novel combinations of these candidate functions. Qand rare the building blocks
for the model and serve as basic variables for delta-updating rules (2) and as
changes may vary over time we also added t as a potential variable. A few decay
rates (e.g., —t/10, —t/20) were chosen to allow for a variety of exponential shapes.
We initialized the model with linear terms to allow for a classic Rescorla-Wagner
model. We also introduced quadratic terms as we wanted to test whether changes
in prediction of Q or in the evaluation of rmay not be linear, in line with the notion
that stimuli is represented by individuals with some form of power transformation
(73). We also wanted to examine whether the two terms, Q and r, interact with
each other or with time, and whether the absolute difference between Q and r
might modulate learning. Finally, we wanted to allow changes in both Qand r to
decay at different rates. As can be seen from this list, we were conservative in our
function choices in order to make sure that the resulting model was interpretable.
Future work may use other termsin line with the researcher's goals and evaluation
of the appropriate relationship between variables.

Phase 1: Equation Discovery from Empirical Probability Estimates.
Participants. All experiments received IRB approval from Harvard Business
School (IRB22-0546) and informed consent was obtained from all research par-
ticipants. In setting our sample size for Study 1, we decided to start with a large
sample of 500 participants in order to determine the appropriate sample required
for SINDy to make accurate predictions. We recruited participants through Prolific.
Participants were paid $4 for their participation in the study in addition to $.03 for
every time that their estimate was within 5% of the true reward rate. Participants
were given attention checks to ensure data quality. On the first and fiftieth trials,
participants were asked to type a predetermined word. On the second trial, and
every twenty trials thereafter, participants were asked to respond to the slider
scale with a specific percentage. On these attention check trials, participants were
instead prompted with “This is an attention check. Please move the slider to
_%," where the percentage was a number between 0 and 100. Participants who
failed either of the word typing checks or more than 2 of the slider checks were
excluded from analysis. Because we assumed that some participants would not
be able to complete the task, we recruited a larger number of participants than
required N = 543. Our exclusion criteria were conditioned on attention checks
(Attention Checks and Exclusion Criteria). We removed three participants for failed
word typing checks and 85 for failed slider checks, for a final sample of N = 455
(men: 216, women: 216, other or refused to answer: 23; age, M = 36.25,
SD=12.94).

After establishing the results from Study 1, we conducted an analysis to
test the appropriate sample size required for SINDy to capture the appropriate
model. We randomly sampled participants from Study 1 to find the smallest N
necessary to reliably recover the Quadratic Q-weighted model. 100 iterations
of this sampling procedure suggested that ~200 participants were enough for
SINDy to reliably capture the model. In Study 2, we therefore aimed for N = 200.
We again used Prolific for recruitment and paid participants the same sum as
in Study 1. Our initial sample was 206. We used the same selection criteria
for exclusions. We removed 29 participants for failed slider checks, for a final
sample was N = 177 (Men: 87, Women: 85, other or refused to answer: 5; Age,
M = 37.88,5D = 12.06).
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Task. We used jsPsych (74) to conduct our study. Participants logged in and
were told to imagine that they are inspecting a factory that produces phones.
The factory produces phones one at a time and will then be inspected by the
participant. Participants were told that the phone would either be working or
defective. Participants were told that they are asked to estimate the probability
that the next phone will be a working phone (Fig. 2). After a single practice trial,
participants completed 100 trials of the task. Participants were first presented
with an inspection slide, depicting a factory and a phone with a "?" printed on
it. Participants were to click a button labeled "Inspect” below the images with-
out any time constraints. After clicking the Inspect button the phone with the
? printed on it was revealed to either be working with a green check mark, or
defective with a red "X." Participants were required to observe this feedback screen
for 3 s before they could advance the page. On the following slide, participants
were asked to respond on a slider scale from 0 to 100% what they believed the
probability was that the next phone would be a working phone. Participants had
to move the slider from its initial value (50%) in order to make their prediction.
Participants were given as much time as they needed to make this judgment, but
were required to wait 3 s before they could respond. This completed a trial and
was repeated for a total 100 trials. A fixation cross was presented for 1 s between
trials. After completing the task, participants were sent to a Qualtrics survey to
fill in their demographics.

Measures. \When participants completed the learning task, they were asked to
estimate the probability that the next phone will be defected. After completing
the task, participants filled outaTIPI 10-item personality measure (75) and a short
demographics survey in which they were asked for their name, age, gender, race,
ethnicity, first language, political affiliation, citizenship, nation of birth, annual
income, and email address. See S Appendix for full analysis of demographics.

Phase 2: Evaluating Decision Models by Assuming the Quadratic Q-
Weighted Model in Existing Datasets.

Paper selection. \We identified papers and datasets for reanalysis using the
Niv Lab OpenData repository (https://nivlab.github.io/opendata/). Tags "2-arm
bandit," “restless bandit," and "two-step" were considered. Criteria for reanalysis
included 1) having freely accessible trial-level data, 2) having freely accessible
code for model fitting and analysis, 3) the use of a Rescorla-Wagner delta-
updating rule nested within the fitted model, and 4) association with a pub-
lished paper. Many datasets did not meet the criteria, narrowing our search to
the following nine datasets:

Kool et al., 2017 Experiments T & 2 (51). Published in Psychological Science
(https://osf.iolyg82m/). The goal of this project was to examine whether people
choose between model-free versus model-based control based on a cost-benefit
analysis. The task was based on the Daw two-step decision making task (52).
Participants made a first choice between two spaceships (green or blue), each
leading to two planets with different probabilities in each of the studies (red, or
purple). In Study 1, the probability of getting to a certain planet with a certain ship
was always 100%. In Study 2 the probability of getting to one of the two planets
was always 70% for each spaceship. When they arrived at the planet, participants
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