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Significance

 Our article offers an answer to a 
foundational question in 
psychology and neuroscience: 
how do people learn from rewards 
and punishments? Specifically, we 
introduce a computational model 
of human reinforcement learning 
(RL) that points to a nonlinear 
updating of the probability of 
reward. The strength of our model 
lies also in the process through 
which it was developed. 
Specifically, we discovered our 
model in a bottom–up fashion 
using symbolic regression—a class 
of machine learning tools applied 
primarily in physics and 
engineering. We believe that, in 
addition to the theoretical 
contributions of the model to the 
field of RL, our work strongly 
demonstrates the utility of 
implementing equation-discovery 
tools in the field of social behavior.
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Computational models of reinforcement learning (RL) have significantly contributed 
to our understanding of human behavior and decision-making. Traditional RL models, 
however, often adopt a linear approach to updating reward expectations, potentially 
oversimplifying the nuanced relationship between human behavior and rewards. To 
address these challenges and explore models of RL, we utilized a method of model 
discovery using equation discovery algorithms. This method, currently used mainly 
in physics and biology, attempts to capture data by proposing a differential equation 
from an array of suggested linear and nonlinear functions. Using this method, we were 
able to identify a model of RL which we termed the Quadratic Q-Weighted model. 
The model suggests that reward prediction errors obey nonlinear dynamics and exhibit 
negativity biases, resulting in an underweighting of reward when expectations are low, 
and an overweighting of the absence of reward when expectations are high. We tested the 
generalizability of our model by comparing it to classical models used in nine published 
studies. Our model surpassed traditional models in predictive accuracy across eight out 
of these nine published datasets, demonstrating not only its generalizability but also its 
potential to offer insights into the complexities of human learning. This work showcases 
the integration of a behavioral task with advanced computational methodologies as a 
potent strategy for uncovering the intricate patterns of human cognition, marking a 
significant step forward in the development of computational models that are both 
interpretable and broadly applicable.

reinforcement learning | dynamical systems | nonlinear modeling | machine learning

 Over the past few decades, the social sciences have seen an increasing prevalence of com-
putational cognitive modeling for explaining human behavior ( 1 ). Computational models 
have had a transformational contribution to a variety of domains, most notably reinforce-
ment learning (RL) ( 2 ). RL provides a mathematical framework for understanding how 
agents learn and make decisions based on experience with rewards or punishments. 
Research on RL has contributed to our understanding of human and animal learning, 
including its neuronal underpinnings in the brain ( 3       – 7 ). Insights from RL in the social 
sciences have also been adopted in machine learning, contributing to tremendous improve-
ments in facilitating learning in artificial agents ( 8   – 10 ).

 Although undoubtedly successful, RL models traditionally update reward expectations 
linearly, an assumption that may oversimplify human behavior’s complex relationship 
with rewards. Contrary to this linear approach, evidence outside of RL models suggests 
that human behavior exhibits a nonlinear response to rewards, with subjective value not 
scaling linearly with the reward’s objective size. This is supported by both psychological 
and economic theories ( 11   – 13 ), as well as neuroscientific findings, indicating a nonlinear 
coding of rewards in the brain ( 14     – 17 ). One of the most studied aspects of this nonlin-
earity is probability weighting, a concept central to decision-making models such as 
Cumulative Prospect Theory (CPT;  13 ). CPT proposes an inverse “S-shaped” weighting 
function, in which low probabilities are overweighted and high probabilities are under-
weighted. However, this is only one of many proposed functional forms in behavioral 
economics. Alternatives,including those by Prelec ( 14 ), Gonzalez and Wu ( 15 ), and oth-
ers,have emphasized different curvature properties, parametric flexibility, and psychological 
interpretations. Moreover, empirical findings suggest that these distortions differ system-
atically between decision-from-description tasks (used in most CPT work) and 
decision-from-experience tasks. The latter often shows reversed or flattened weighting 
patterns (e.g., underweighting of rare events), raising questions about the stability of these 
effects across contexts ( 16   – 18 ).

 Despite the empirical evidence for nonlinearities in valuation and utility, most RL 
models continue to use linear delta-updating rules for learning. The Rescorla–Wagner D
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model ( 19 ), arguably one of the most influential delta-updating 
rules, assumes exactly this: A linear relationship between expecta-
tions and change in response to feedback. Variations of the model 
that incorporate decay over time, or asymmetric learning rates for 
positive and negative feedback, all share this common assumption 
that learning is linear. Prior work has incorporated nonlinear trans-
formations of outcome values,such as risk-sensitive utilities or 
probability weighting functions (e.g., refs.  20   – 22 ), however these 
typically modify the inputs to the prediction error, leaving the 
structure of the learning rule itself unchanged. This distinction 
between nonlinear inputs and nonlinear updating has important 
implications for how models capture learning dynamics and the 
emergence of systematic biases.

 This underscores a complex problem in model development: 
despite their achievements, RL models—and computational models 
of social behavior in general—are vulnerable to the biases and lim-
itations of their designers, as they are mostly developed top–down 
based on theoretical insights or adapted from historically dominant 
models. This is perhaps why canonical RL models struggle to find 
a balance between interpretability, parsimony, accuracy, and gener-
alizability across individuals and contexts ( 23 ). New models are 
being proposed continuously; however, they suffer from many of 
the same limitations as the models they aim to replace ( 24 ).

 Deep learning may come to mind as a suitable alternative to 
top–down model development, but comes with its own tradeoffs: 
high prediction accuracy at the expense of interpretability and 
limited generalization outside training data. Recently, however, 
efforts to merge deep learning with traditional models have aimed 
at enhancing interpretability and systematic discovery ( 25     – 28 ). 
Constraining deep learning within the bounds of theory has 
yielded more understandable models ( 29     – 32 ), though their broad 
applicability remains unproven. A complementary approach is to 
improve existing interpretable models using bottom–up, machine 
learning, approaches ( 33 ). These methods, while innovative, still 
depend on preexisting models and extensive data. To address these 
gaps and promote model discovery in the social sciences, we pro-
pose to adopt algorithms designed for data-driven discovery of 
nonlinear differential equations in physics and engineering. These 
data-driven approaches allow the freedom to explore a vast range 
of functional forms in relatively small datasets while constraining 
the models to be interpretable.

 The notion that dynamic models can be discovered using bot-
tom up approaches received increased attention in recent decades, 
especially in physics ( 34 ,  35 ). Early work in this space suffered 
from overfitting and required immense computing power. 
However, recent developments allow for implementations of bot-
tom–up equation discovery in complex, noisy, and multidimen-
sional systems ( 36   – 38 ), making it well suited for model discovery 
in social sciences. Unlike other, more opaque machine learning 
approaches, these algorithms generate systems of equations that 
researchers can interpret. Users can also predetermine the space 
of possible terms that describe the system and control the level of 
complexity of the obtained model.

 Here, we utilize an equation discovery algorithm, SINDy 
(Sparse Identification of Nonlinear Dynamics;  24 ), to develop 
and improve human RL models. SINDy is based on the idea of 
sparse regression, seeking to identify a minimal set of ordinary 
differential equations that aim to describe the underlying dynam-
ics of a system that produced the observed data (here, the under-
lying cognitive process). It uses a combination of optimization 
and feature selection to find the sparse set of candidate functions 
through iterative multiple regression, and it can amalgamate a 
wide variety of linear and nonlinear terms (see Methods  for details). 
SINDy has been applied in physics ( 39 ,  40 ), engineering ( 41 ,  42 ), 

and biology ( 24 ,  43 ). An introductory paper suggested its use in 
social sciences ( 44 ), but it has not been used yet for model devel-
opment with empirical data.

 The goal of the current project is to discover models of RL. 
We use SINDy to enable testing of multiple RL models without 
the biases inherent to traditional top–down model development. 
In phase 1, we designed a simple RL task that allows us to capture 
participants’ estimation of a probability of reward across multiple 
trials. Using SINDy, we then revealed a model—termed the 
Quadratic Q-Weighted model—that introduces unique behav-
ioral insights into how people learn the probability of reward. 
This model, in line with probability weighting theories, demon-
strates that participants exhibit a systematic distortion in their 
estimation or probability, which is similar to the nonlinear prob-
ability weighting seen in previous decision-making research. 
What sets the model apart, however, is its ability to capture a 
dynamic transition between S-shaped and inverse S-shaped dis-
tortions, revealing a context-dependent flexibility influenced by 
participants’ expectations. In phase 2 we then take the Quadratic 
Q-Weighted model and compare its ability to predict reward 
data on completely different kinds of tasks involving evaluating 
reward in much more complicated situations such as a two-armed 
bandit task. We do not use SINDy directly in this phase; rather, 
we take the Quadratic Q-Weighted model discovered using our 
simple RL task and embed that model within existing models 
of more complex decision-making. We demonstrate that the 
application of the Quadratic Q-Weighted model achieves better 
results than previous state-of-the-art models across eight of nine 
public datasets, each published in leading academic journals. 
This work therefore makes a two-fold contribution: first, it pro-
vides a proof of concept for utilizing an equation discovery algo-
rithm in the social sciences, enabling the discovery of a RL model 
from behavioral data. Second, it introduces a model of human 
RL that accounts for probability weighting distortions and 
demonstrates its generalization capabilities to more complex 
decision-making tasks, thereby unveiling insights into human 
cognition. 

Results

Phase 1: Equation Discovery from Empirical Probability 
Estimates. Our first goal was to determine whether algorithms 
discovered by SINDy can provide insights into probabilistic 
learning when trained on empirical data from human learners. 
To this end, we conducted two empirical studies using a learning 
task composed of 100 trials. Participants assumed the role of 
an inspector tasked with identifying the rate at which a factory 
produces working versus defective phones (Fig. 1). On each of 
the 100 trials, participants inspected a new phone produced 
by the factory and learned whether it was working or defected. 
Participants then reported the probability that the next phone 
would be working (see Methods for detailed description). The 
true probability of receiving a working phone changed trial-to-
trial according to a Gaussian random walk (SD = 0.1), bounded 
between 0.1 and 0.9; the initial value was drawn from a uniform 
distribution in the range 0.1 to 0.9. To incentivize accurate 
predictions, we offered participants a $0.03 bonus per response 
within 5% of the true probability. Attention checks were included 
during the task to ensure data quality; participants who did not 
pass our criteria for attention checks were excluded from analysis 
(Methods).

 We ran two versions of the task. In Study 1 (N  = 455), we set 
the initial probability of a working phone to 0.5. This probability 
changed every trial according to a Gaussian random walk with D
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SD = 0.025; the random walk was unique for every participant. 
We used diffusion in the true reward rate in order to keep partic-
ipants engaged with the task, as done in similar tasks ( 45   – 47 ).

 In Study 2 (N  = 177), the task was the same as in Study 1 except 
for two modifications. First, the initial value of the true probability 
of a working phone was randomly drawn from a uniform distribu-
tion U (0.1, 0.9) rather than being fixed at 0.5. Second, we increased 
the SD of the random walk from 0.025 to 0.1. The purpose of these 
modifications was to explore how SINDy performed across a broad 
range of task parameters. Neither Studies 1 or 2 were preregistered 
and all analyses should be considered exploratory.

 We trained SINDy using data from all participants who met our 
inclusion criteria (see Methods  for exclusions), separately for each 
study. Input data provided to SINDy were limited to participants’ 
reported expectations of observing a working phone  Qt , their obser-
vations of whether a phone was working or defective  rt , and trial 
number t . We also provided SINDy with a matrix of candidate 
functions for feature selection, allowing for a variety of models to 
be identified. These included identity functions for previous expec-
tations and reward, time-dependent decaying functions, and expo-
nential functions for nonlinearity (see Methods  for specifics on 
candidate functions and fitting procedure). Consequentially, the 
Rescorla–Wagner model could be discovered by SINDy if it best 
explained the empirical data from either study. This was ensured 
through a series of simulation studies (Simulations ).

 For Study 1, SINDy discovered the following model (R2  =  
0.204):

﻿Qt+1 = 0.11rt − 0.24Qt
2.  

  For Study 2, SINDy discovered a near identical model (R2  =  
0.196):

﻿Qt+1 = 0.10rt − 0.17Qt
2.  

  To demonstrate that these models were superior in fit to the 
Rescorla–Wagner model, we separately trained SINDy with a 

smaller matrix of candidate features limited to only the r-Q  term. 
This limited SINDy to only discover the Rescorla–Wagner model. 
These limitations yielded worse fit in both studies (Study 1 R2  = 
0.144; Study 2 R2  = 0.174).

 Note that the coefficients of the discovered models’ parameters 
are not symbolic and are fixed across participants. In both studies, 
SINDy discovered models of identical form, albeit with slightly 
different numerical values. We termed the model that SINDy 
produced the Quadratic Q-Weighted model since the model 
includes a quadratic term on previous expectation rather than a 
linear one (hence “Quadratic”) and the model includes unequal 
scaling coefficients for present reward and previous expectation 
(Q﻿-value; hence “Q-Weighted”). The Quadratic Q-Weighted 
model accounts for several interesting behavioral phenomena dis-
cussed in the results. Most importantly, the functional form of 
the Quadratic Q-Weighted model leads to an asymptotic bias in 
the estimation of the true probability. Namely, the model implies 
that over the long term, participants tend to underestimate Q  
values when reward probability is high and tend to overestimate 
﻿Q  values and reward probability is low. The transition between 
under- and overestimation happens approximately when the true 
probability of reward is equal to a/b where

﻿
Qt+1 = art − bQt

2.
  

   Fig. 2  illustrates why the Quadratic Q-Weighted model implies 
such over/under estimation, showing the change in Q  as a function 
of either reward or no-reward and as dependent on previous Q  
(see SI Appendix  for a proof of this point of under-to-over estima-
tion). For low values of Q , the change in Q  in the Quadratic 
Q-Weighted model is positively shifted both for reward and no 
reward compared to classic Rescorla–Wagner when Q  values are 
low. Conversely, for high values of Q , the change in Q  in the 
Quadratic Q-Weighted model is negatively shifted both for reward 
and no reward compared to classic Rescorla–Wagner when Q  
values are high. Since the Rescorla–Wagner model asymptotically 

What do you think is the likelihood of 
the next phone being a working phone? 

Fig. 1.   Structure of learning task used in Studies 1 and 2. Participants inspected phones produced from an assembly line. On each trial, a single phone was 
revealed to either be working or defective. Following each observation, participants were asked to rate on a scale from 0 to 100% what they thought was the 
likelihood of the next phone being a working phone.
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always converges to the true probability for any learning rate ( 48 ), 
the shifts shown in  Fig. 2  demonstrate that the Quadratic 
Q-Weighted model implies the asymptotic bias in the estimation 
of the true probability. One example of the underestimation is 
that within this model an agent cannot predict Q  values larger 
than the stable point  

√

a∕b    even when the reward probability is 
1—this is where expectations stabilize. Noisy agents, like humans, 
can occasionally predict Q  values larger than  

√

a∕b , but thereafter 
will be biased to lower their expectations back toward  

√

a∕b    even 
if met with further reward.       

 To further explore the implications of the Quadratic Q-Weighted 
model on participants’ behavior, we employed linear mixed effects 
models to predict changes in expectations as a function of reward 
and distance from the stable point  

√

a∕b . We conducted a total of 
four models; two for each study, one of which included only pos-
treward trials and the other post-nonreward trials. The independent 
variable in each of the models was whether the current Q value was 
lower or higher than the stable point ﻿

√

a∕b . The dependent variable 
was change in Q from previous trial. We dummy coded the model 
such that the data above the stable point would be the intercept of 
the model. This allowed us to not only compare significance 
between the conditions (above or below  

√

a∕b) , but also compare 
results from above the stable point to zero. Our model also included 

a random variable of participant id. Starting with the intercept of 
the model, which compared the above the stable point results to 
zero, results suggested that in both Study 1 and Study 2, when 
receiving a reward and when they were above the stable point, 
participants significantly lowered their estimation of Q ( Fig. 3  
Orange bar compared to 0; Study 1: b = −0.167, P  < 0.001; Study 
2: b = −0.085, P  < 0.001). These results would not have been seen 
if participants were using a classical Rescorla–Wagner model in 
which participants always increase their estimation of Q following 
a reward. Similar results were found in cases where there was no 
reward, such that when above the stable point, participants also 
significantly lowered their estimation of Q ( Fig. 3  Orange bar com-
pared to 0; Study 1: b = −0.291, P  < 0.001; Study 2: b = −0.328, 
﻿P  < 0.001). These results should be expected, as both in our model 
and in a classic Rescorla–Wagner model, participants would lower 
their estimation of Q following a no-reward. Having established 
this difference from zero, results also suggested that in all cases, 
there was a significant difference in change in Q as a function of 
whether the previous Q was above or below the stable point (Study 
1 Rewarded: b = 0.320, P  < 0.001; Study 1 Unrewarded: b = 0.341, 
﻿P  < 0.001; Study 2 Rewarded: b = 0.223, P  < 0.001; Study 2 
Unrewarded: b = 0.337, P  < 0.001). These results are congruent 
with Rescorla–Wagner.        

 Building on these findings, we next employed a complementary 
approach to balance the discovery of generalizable learning 

Fig. 2.   An overview of behavior of the Quadratic Q-Weighted model we discovered using empirical data with SINDy. The x-axes reflect reported Q value and 
the y-axes are the median change in value. Gray dots show binned Q into 10 discrete categories, each with a bin size of 0.1. Categories were labeled with the 
upper bound of each bin. Error bars are 95% CI. (A) Study 1 empirical change in Q following no reward. (B) Study 1 empirical change in Q following reward. (C) 
Study 2 empirical change in Q following no reward. (D) Study 2 empirical change in Q following reward. Predicted changes in Q according to the best fit Quadratic 
Q-Weighted model (solid red) and the best fit Rescorla–Wagner model (dashed blue) are overlaid.
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dynamics with the need to capture individual variability. Although 
the analysis conducted with the SINDy algorithm allowed us to 
identify the core functional form of a learning model by pooling 
data across participants, we recognize that pooling data in this 
way can obscure meaningful individual differences. To address 
this possibility, we next used the probabilistic programming lan-
guage Stan ( 49 ) for individual-level model fitting, allowing us to 
assess the generalizability of the model and estimate participant- 
specific parameters. This also allowed us to validate the Quadratic 
Q-Weighted model’s performance by comparing it against other 
existing models. Specifically, we fit five competing nonhierarchical 
models to each subject from our empirical data using Stan (see 
﻿SI Appendix  for model specifications and fitting procedures). These 
models included: a classic Rescorla–Wagner model ( 2 ), a Rescorla–
Wagner model with time-dependent exponential decay ( 2 ), a 
Rescorla–Wagner model with asymmetric learning rates ( 41     – 44 ), 
a binary Kalman filter model ( 50 ), and SINDy’s discovered model, 
the Quadratic Q-Weighted model. We chose to add a binary 
Kalman filter model to the analysis, despite the fact that it takes 
latent variables that cannot be discovered by SINDy, to get a sense 
of how the model compares to such modern models that include 
prediction uncertainty. We compared the relative fits of models 
using the Bayesian information criterion (BIC), which penalizes 
more complex models for the number of free parameters they 
include. The resulting BICs revealed that the Quadratic 
Q-Weighted model outperformed all alternative models 
(SI Appendix ). A comparison of fits across models is visualized for 
a representative participant in  Fig. 4 . These results at the individual 
participant-level support our prior group-level analyses conducted 
with the support of SINDy: Participants’ behavior in making 
probabilistic inference in our study is best explained by a SINDy 
discovered RL algorithm, the Quadratic Q-Weighted model.        

 Having established the Quadratic Q-Weighted model’s superior 
fit at both the group and individual levels, we next examined the 
distribution of individualized parameters to explore the extent of 
heterogeneity in participants’ learning behavior. Beyond the superior 
group-level fit indicated by BIC, we also find at the individual-level 
that the Quadratic Q-Weighted model best fit 68.35% of partici-
pants in Study 1, and 64.41% in Study 2. Importantly, the a and b 
coefficients scaling the reward and Q terms ( Qt+1 = art − bQt

2 ) 
were free to vary between participants in these fitted models. This 
revealed substantial heterogeneity among individuals around the 
group coefficient values discovered by SINDy: Study 1 mean a = 

0.21 ± 0.18, Study 1 mean b = 0.45 ± 0.46; Study 2 mean a = 0.28 
± 0.19, Study 2 mean b = 0.61 ± 0.52. These findings suggest signif-
icant individual differences in how participants weigh recent rewards 
and adjust for previous estimates.

 To further probe this variability, we allowed the exponent on 
Q to vary freely as an exploratory follow-up. This adjustment 
improved the model fit for 61.1% of participants in Study 1 and 
77.96% in Study 2, indicating that the fixed exponent of 2 used 
in the original Quadratic Q-Weighted model does not fully cap-
ture all individual differences. These individualized exponents were 
estimated to be on average 1.52 ± 0.76 in Study 1 and 1.43 ± 0.81 
in Study 2, indicating a high degree of variability among individ-
uals in how they update expectations.  

Phase 2: Evaluating Decision Models by assuming the Quadratic 
Q-Weighted Model in Existing Datasets. After finding the 
Quadratic Q-Weighted model with empirical data, we aimed 
to demonstrate its value by reanalyzing prior studies of choice 
behavior. Our goal was to determine whether the Quadratic 
Q-Weighted model provided a better account of learning in 
decision-making tasks than does the Rescorla–Wagner model. This 
reanalysis also provided an opportunity to evaluate the model’s 
performance in studies that did not overtly measure participants’ 
expectations—a vast majority of decision-making tasks do not 
probe estimates of probability overtly; they instead ask participants 
to act on implicit learned probabilities by selecting between two 
or more alternatives. Researchers are often most interested in 
the elements governing these selections, such as explore-exploit 
tendencies and stochasticity. However, because it is assumed that 
selection depends on one’s estimates of reward probability, it is 
critical that researchers assume a learning model that best captures 
those estimates and their dynamics. To this end, we reanalyzed 
open datasets sourced from nine papers published in leading 
academic journals, each using the Rescorla–Wagner updating rule 
nested within larger decision models, with the goal of replacing 
that rule with our Quadratic Q-Weighted model. In each of the 
datasets, we used the authors’ original analysis scripts for model 
fitting (see SI Appendix for details). To compare the authors’ model 
and our variation with the Quadratic Q-Weighted model as a 
learning rule, we modified the original authors’ scripts to fit a 
variation of their model using the general form of the Quadratic 
Q-Weighted model in place of Rescorla–Wagner. Notice that the 
model produced by SINDy in the empirical phase had a specific 

Fig. 3.   Empirical changes in expectation Q as a function of Q’s position relative to the stable point ( 
√

a∕b) and reward. Error bars are 95% CI. 10% of observations 
are included as dots to visualize the response distribution. Decreases in Q can be observed when Q is greater than the stable point, even following reward.
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coefficient value for each term. In these analyses, we allowed those 
coefficients to vary freely between subjects.

 To compare the model that was used in each paper to our Quadratic 
Q-Weighted model we calculated the BIC of both models using the 
summed likelihood estimates of each participant’s data. BIC was cho-
sen due to its consistency in identifying parsimonious yet well-fitting 
models by penalizing more heavily for superfluous parameterization. 
Likewise, BIC was used by all authors of the selected datasets. In all 
but one dataset, the model using the Quadratic Q-Weighted learning 
rule outperformed the original best model ( Table 1 ). 

 Beyond fit, models using the Quadratic Q-Weighted learning rule 
may provide downstream benefits to understanding processes of 
decision-making. For example, one dataset in particular, Kool et al., 
2017 Experiment 2 ( 51 ), the Quadratic Q-Weighted model yielded 
decision-making parameter estimates that diverged from the authors’ 
main findings. In their 2017 article, Kool and colleagues ( 51 ) pro-
posed that arbitration between model-based (MB) and model-free 
(MF) learning systems involves a cost–benefit analysis. The MB 
system, which plans toward goals, is more accurate but computa-
tionally demanding, whereas the MF system relies on habits and is 
computationally efficient but less flexible. Kool et al. suggested that 
people decide which system to use by weighing the benefits of the 
MB system’s accuracy against its cognitive cost. This implies that MB 
control is employed when its benefits (in terms of reward) outweigh 
the costs (in terms of cognitive effort).

 The most common method for measuring individual difference 
in this cost–benefit analysis is with the Two-Step Task ( 52 ), a com-
plex, multistep decision-making task. Despite this, Kool et al. 
demonstrated in an earlier paper ( 53 ) that there exists no cost–benefit 
relationship between model-based vs. model-free strategy and per-
formance on the task, and remediate this with a novel version of the 
task. To explore this further, they tested the effect of monetary stakes 
on strategy use in the original task, positing that high stakes should 
fail to yield increased MB control when it provides no advantage. 
They tested this by fitting a dual-systems RL model to their data 
( 52 ). This RL model includes three separate Rescorla–Wagner updat-
ing rules for changing participants’ expectations of reward followed 
by choosing specific spaceships and aliens. They found that there 
was no difference in MB control between high and low stakes on 
the original version of the task (Experiment 2; t(99) = 0.4132,  
﻿P  = 0.6804). In interpreting these findings, the authors suggest that 
participants might have a prior belief that MB control is generally 
associated with higher rewards, driven by real-world experiences where 
MB control is usually beneficial. This belief, reinforced by training, 
led participants to maintain a mix of MB and MF strategies.

Fig. 4.   Expected value estimates (Qt) over 100 trials for a single representative participant. The “Empirical” panel represents the participant’s reported values 
(black lines), while the remaining panels depict predictions (red lines) from models: RW (Rescorla–Wagner), RW with exponential decay, RW with asymmetric 
learning rates, QQW (Quadratic Q-Weighted), and the Kalman Filter. Missing data correspond to trials where attention checks were administered. Although all 
models demonstrate a generally good fit to the observed data, the QQW model stands out with a superior fit.

Table 1.   Model fits from each reanalyzed datasets us-
ing original authors’ models and variations replacing 
Rescorla–Wagner learning rules with the Quadratic Q-
Weighted model

Original BIC
Quadratic 

Q-Weighted BIC

 Kool et al. 2017 Experiment 1  461.35 ﻿458.47﻿

 Kool et al. 2017 Experiment 2  474.32 ﻿450.23﻿

 Lefebvre et al. 2017 
Experiment 1

 3857.55 ﻿3806.44﻿

 Lefebvre et al. 2017 
Experiment 2

 2512.77 ﻿2496.62﻿

 Palminteri et al. 2017 
Experiment 1

 3206.48 ﻿3199.18﻿

 Chambon et al. 2020 
Experiment 4

﻿10987.38﻿  10997.49

 Decker et al. 2016  37463.96 ﻿36956.91﻿

 Potter et al. 2017  25784.64 ﻿25373.13﻿

 Nussenbaum et al. 2020  63378.57 ﻿62360.65﻿
Note: BIC is Bayesian Information Criterion. Lower BIC reflects better model fit. Original 
BIC is for the model used by the authors of the dataset. Quadratic Q-weighted BIC is for 
the variation of those models using the Quadratic Q-Weighted model as a nested learning 
rule in place of the Rescorla–Wagner learning rule.D
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 We disagreed with this conclusion: if MB control is no better than 
MF on the original version of the task, participants should use MB 
control less  than MF under high stakes. This is because high stakes 
can be stressful and impose cognitive load. MB control is costlier, 
despite it being equally as effective in this case, and the cognitive 
effort required to use MB control could be too demanding in high 
stakes situations. It is possible that parameter estimates could be 
improved and better reflect our hypothesized effect if a learning 
model were fit to the data which better reflects peoples’ true learning. 
To test this, we modified the fitted dual systems RL model to instead 
use the Quadratic Q-Weighted  model discovered by SINDy in our 
empirical studies. We found that our version of the dual systems 
model with the Quadratic Q-Weighted model as a learning rule 
better fit Kool et al.’s Experiment 2 data (BICQQW  = 450.23) than 
the original dual systems RL model (BICRW  = 474.32). Furthermore, 
we observed that the fitted free parameters for the MB weight in 
high stakes was indeed significantly less than the MB weight in low 
stakes (t(99) = 2.9303, P  = 0.0042), supporting our hypothesis.   

Discussion

 In this work, we demonstrated that bottom–up equation discovery 
algorithms can be used for model development in social sciences. 
We collected empirical data in two variations of a learning task 
and used SINDy to develop an appropriate model for participants’ 
behavior. This model—the Quadratic Q-Weighted model—pro-
vided insights into human learning and accounts for several inter-
esting behavioral phenomena. Most importantly, the model 
introduces a tendency over the long term to underestimate Q  
values when true reward rates are high and overestimate Q  values 
and true reward rates are low. Finally, we nested the Quadratic 
Q-Weighted model within existing, more complex decision mod-
els used by the authors of nine published datasets. These models 
notably were of decisions made on complex decision-making tasks, 
entirely different from our probability estimation task. We found 
that the revised models using our Quadratic Q-Weighted model 
instead of the Rescorla–Wagner updating rule provided a better 
fit in eight out of nine of those cases compared to the models 
originally used by the authors. We further demonstrate that the 
Quadratic Q-Weighted model does more than simply improve 
fit; it impacted the conclusions and interpretation of a previous 
study of complex decision-making. These results provide a prom-
ising path for the use of the Quadratic Q-Weighted model, as well 
as the use of equation discovery algorithms to development of 
interpretable but more predictive computational models.

 Across multiple levels of analysis, what stands out as the most 
important feature of the Quadratic Q-Weighted model is its pre-
diction that participants tend to overestimate low probabilities and 
underestimate high probabilities. This systematic bias may reflect 
the influence of persistent prior beliefs, consistent with Bayesian 
frameworks of inference ( 54 ,  55 ). In Bayesian models, a prior rep-
resents the learner’s initial beliefs about the probability distribution 
of an outcome. If individuals maintain a strong prior centered 
around a moderate probability value (e.g., 0.5), subsequent learn-
ing will appear conservative, pulling extreme probabilities toward 
the center. This behavior is qualitatively similar to the effects pro-
duced by the quadratic term in our model, which attenuates 
updates as expectations approach the extremes of 0 and 1.

 Recent work by Zhu et al. ( 56 ,  57 ) provides a compelling 
process-level account of such biases. Their Bayesian Sampler and 
Autocorrelated Bayesian Sampler models explain how cognitive 
constraints, such as limited sampling and autocorrelated internal 
states, can produce systematically biased probability estimates even 
when agents perform rational inference over time. These models 

show that conservatism and subadditivity can arise naturally from 
the sampling process, particularly when prior beliefs are strong 
and sampling is limited. While our model does not explicitly 
implement Bayesian sampling, it captures a similar behavioral 
signature: an asymptotic bias that emerges as participants anchor 
expectations toward intermediate values regardless of the observed 
evidence. This convergence raises interesting questions about 
whether the quadratic term in our model reflects a heuristic 
approximation of Bayesian updating or an internalized bias shaped 
by experience. Notably, we observe this pattern in both our empir-
ical studies, including Study 2 where initial reward probabilities 
varied. Future work could directly compare the Quadratic 
Q-Weighted model to Bayesian sampling models, particularly 
under conditions that manipulate priors or restrict cognitive 
resources, to better understand the origins of such nonlinear 
updating dynamics.

 While the current work focused on model development within 
RL, we envision many exciting new directions for model devel-
opment in various social domains. Many subdomains in social 
sciences are still utilizing existing top–down models and these 
models can potentially be improved while maintaining interpret-
ability. For example, models of social contagion, such the SIR 
epidemic models ( 58 ), which already benefit from further devel-
opment using tools such as SINDy ( 24 ), can also be tested in 
explaining social interaction and contagion. Other domains such 
as decision making ( 59 ), planning ( 60 ), norm formation ( 61 ), 
affect ( 62 ), and many others all have models that are constantly 
being developed using top–down approaches, and these domains 
could potentially benefit from using equation discovery algorithms 
for model improvement and development. Finally, many domains 
in the social sciences involve analysis of longitudinal data, which 
is often analyzed using structural equation modeling or other tools 
that mostly test for linear processes ( 63 ). SINDy and other equa-
tion discovery tools are well suited to fit existing longitudinal data 
in order to uncover driving equations. It is important to note that 
we do not wish to eliminate hypothesis testing or theory-based 
models, but rather to expand the modeler’s toolbox in considering 
alternative models for comparison and later confirmatory analyses, 
thus encouraging the discovery of novel, interpretable, predictive, 
and generalizable models.  

Limitations and Future Directions

 We acknowledge several limitations in using SINDy for model 
discovery in social science. First, our implementation is at present 
limited to modeling directly observable data. Across our empirical 
studies, Q﻿-value was an explicit variable. In many RL experiments, 
expected value is a latent variable that is estimated from directly 
observable decisions ( 54 ,  64 ). Other models could include these 
latent variables, such as for uncertainty in expectations, which 
could potentially improve their quality in terms of predictability 
and generalizability. Despite these limitations, the approach we 
adopted here has the potential to change how models are devel-
oped in the social science.

 A second limitation is that the SINDy algorithm is bounded 
by the specific decisions made in its implementation, such as the 
list of candidate functions and hyperparameters that govern the 
discovered model’s sparsity (and hence control over its complex-
ity). These decisions, as well as the indication of whether the dis-
covered model is suitable, are subjective. Therefore, it is possible 
that there may exist other alternative models which could be better 
fitting. For example, the present study omitted candidate func-
tions of continuous time. Although our discovered Quadratic 
Q-Weighted model provides a unique perspective on probability D
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weighting, it departs from the broader theoretical basis of RL 
models like Temporal Difference (TD) learning ( 2 ), which can be 
applied in real-time and have demonstrated strong links to learn-
ing processes in the brain ( 48 ,  65 ). The quadratic transform used 
here, although beneficial for capturing nonlinearity in probability 
estimates, does not provide the same foundation for understanding 
learning as a general, time-continuous process. However, it may 
be possible to incorporate the discovered nonlinearity within a 
TD learning framework. Specifically, future work could modify 
the TD update equations to include a transformed value function, 
such as f(V)=V + βV2, allowing us to retain the incremental, 
time-based learning properties of TD while introducing systematic 
biases that capture nonlinearities in human learning behavior. This 
would create a hybrid model that not only improves predictive 
performance but also preserves the dynamic learning structure of 
TD, potentially bridging these two perspectives effectively.

 A third limitation of this study is that the model that was dis-
covered by SINDy was based on a relatively narrow empirical task. 
Although the Quadratic Q-Weighted model showed excellent 
generalizability in predicting behavior across two new empirical 
studies and eight of nine reanalyzed datasets, its broader applica-
bility requires further exploration. One notable exception to the 
Quadratic Q-Weighted model’s superior performance was 
observed in a go/no-go dataset ( 66 ), where the Rescorla–Wagner 
model provided a better fit to the underlying learning process. We 
note that this dataset’s structure—featuring a large number of 
trials per participant (N  = 600) but a small number of participants 
(N  = 20)—may have reduced its ability to robustly differentiate 
between models. However, the unique demands of go/no-go tasks, 
which rely heavily on inhibitory control, may inherently favor 
simpler models like Rescorla–Wagner. Unlike the other datasets 
analyzed, the go/no-go task may not highlight the nuanced 
reward–probability interactions or asymptotic behaviors that the 
Quadratic Q-Weighted model captures well. Moreover, the can-
didate features that we provided to SINDy for modeling learning 
in forced-choice tasks may not adequately capture learning 
dynamics unique to go/no-go tasks. These findings may suggest 
that tailoring candidate functions to task-specific dynamics is cru-
cial for improving the generalizability and performance of discov-
ered models.

 Although it may be necessary to tailor models to task-specific 
dynamics, perhaps like those of the go/no-go task, it is equally as 
valuable that models generalize across a wider range of decision- 
making contexts. Importantly, we did show in our empirical studies 
that the identified Quadratic Q-Weighted model was robust to 
changes in initial reward probability and to varying levels of diffu-
sion noise. However, the model’s utility in tasks where reward prob-
abilities remain static over time or where probabilities are more 
conservatively bounded has yet to be tested. Future studies could 
further evaluate the model under these conditions, such as the 
change-point detection studies conducted by Nassar and colleagues 
( 67 ,  68 ), where participants are asked to predict continuously var-
ying outcomes. These tasks involve different reward structures that 
could help determine whether the nonlinearity identified in our 
model captures more general aspects of human learning, particularly 
under conditions of uncertainty and dynamically changing envi-
ronments. Future research should extend the model to such 
decision-making problems and explore additional nonlinearities, 
such as exponential or logarithmic transformations.

 It is also important that future research consider edge cases. An 
important aspect of the Quadratic Q-Weighted model is its pre-
diction of asymptotic behavior, particularly in situations where 
the model suggests an inherent bias in how individuals estimate 
extreme probabilities. Specifically, the model predicts that 

participants cannot estimate Q values beyond a certain stable 
point (√(a/b)), even in situations where the true reward probabil-
ity is maximal (e.g., 1). This creates an opportunity for empirical 
validation, whereby edge cases can be specifically designed to test 
these predictions. For example, future experiments could involve 
a prolonged sequence of trials with a constant reward probability 
of 1 to determine whether participants’ estimates truly converge 
at the stable point predicted by the model or if they adaptively 
reach the true value. If participants are found to be limited by this 
predicted asymptotic bias, it would lend further support to the 
model’s validity. Conversely, if participants adapt beyond the pre-
dicted stable point, it may indicate the need for further refinement 
of the model. Such empirical tests would help to identify the 
conditions under which the model captures or fails to capture 
human learning behavior and highlight the importance of under-
standing model limitations within different RL environments. 
That said, we acknowledge that the model may fail to predict 
behavior under such rigid conditions. Although future studies 
have the potential to further validate the Quadratic Q-Weighted 
model, we suggest that the model’s scope be interpreted with the 
constraints of the learning environment in mind.

 Finally, a fourth limitation concerns the interpretation of  
nonlinearity in the Quadratic Q-Weighted model. Specifically, our 
formulation embeds nonlinearity directly in the updating rule—
﻿Qt+1 = art − bQt

2   —rather than in a utility transformation of out-
comes prior to updating. While this structure captures 
state-dependent prediction errors, it differs computationally from 
models that apply a nonlinear utility function to feedback, such as 
﻿Qt+1 = au(rt ) − bQt , where  u(rt )    might be quadratic. These two 
sources of nonlinearity reflect distinct psychological mechanisms: 
Utility curvature implies preferences over outcomes, while nonlinear 
updating implies that learning itself is biased or distorted based on 
prior expectations. Moreover, they make different predictions for 
learning. For example, nonlinear updating can produce attraction 
to stable points—values of  Q    where learning effectively ceases—
whereas nonlinear utility does not predict such asymptotic behavior, 
as it preserves linear dependence on the current value estimate. That 
said, empirically distinguishing between these mechanisms is diffi-
cult within the current scope, as reward magnitudes in all of our 
studies (and those we reanalyzed) are discrete (either 0/1 or −1/1). 
Detecting utility curvature robustly would likely require tasks with 
continuous or graded rewards. While distortions akin to nonlinear 
utility (e.g., asymmetric weighting of 0 vs. 1 s) may partially be 
captured by the Quadratic Q-Weighted model’s separate terms for 
reward and  Qt

2 , this approach cannot model all plausible forms of 
utility transformation (e.g., inflation of 0 s). We therefore leave the 
question of disentangling nonlinear utility from nonlinear updating 
to future work. Promising directions include experimental designs 
using continuous outcomes and simulation-based model recovery 
studies that systematically vary utility and update structures in fac-
torial combinations.

﻿Overall, this study demonstrates the potential of bottom–up 
equation discovery methods, such as SINDy, to advance model 
development in the social sciences. The Quadratic Q-Weighted 
model provides key insights into human learning, uncovering 
systematic biases in probability estimation and generalizing across 
diverse datasets. By improving fit and influencing interpretations 
of prior studies, the model showcases the power of integrating 
nonlinear dynamics into decision-making frameworks. More 
broadly, this work highlights how data-driven discovery can com-
plement theory-driven approaches, offering a path toward more 
interpretable and predictive models that deepen our understand-
ing of human behavior.  D
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Methods

Explaining SINDy. For our analysis, we used PySINDy (69, 70), a Python package 
that provides tools for applying the SINDy algorithm (71) for model discovery. 
SINDy is used to approximate the unknown governing equations of a dynamical 
system using a sparse regression framework. It assumes that the dynamics can 
be expressed as a sum of known functions, multiplied by unknown coefficients. 
By leveraging sparsity-promoting techniques, SINDy aims to identify the most 
relevant terms in the equation, effectively providing a parsimonious representa-
tion of the system’s behavior. Typically, SINDy estimates derivatives for system 
variables of the following form:

dX

dt
= �(X ,U)B ,

where X is a matrix of observed variables to be modeled, U is a matrix of control 
variables that are not to be modeled but may be important for modeling vari-
ables in X, �(X , U) is a matrix of candidate features selected by the researcher 
that transform the data, and B is a vector of coefficients that scale the candidate 
features. Through sparsification techniques such as L2 ridge regression, most of 
these coefficients are reduced to zero and only the most predictive features remain 
(see below for details on how we chose to promote sparsity). The objective of the 
SINDy algorithm is to solve for B given the researcher selected candidate features 
and the approximated first-0rder derivatives of the observed data.

For most experiments in the social sciences, observed data are collected in 
discrete trials. Therefore, we used SINDy to estimate discrete-time models of 
the form:

xk+1 = F (xk , uk ),

where xk are the observed variables to be modeled from X at timepoint k, and 
uk are the control variables (such as r and t in this case) at timepoint k. Rather 
than calculating a system of derivatives, using SINDy we calculated a matrix X′ 
where the columns of X′ are measures of x moved forward in time until the final 
datapoint at time K (i.e., [ẋ1, ẋ2, ẋ3, ⋯ , ẋK ] ). With this approach, SINDy estimates 
discrete-time equations for system variables in the form:

X
� = �(X ,U)B .

We solve for B by using a variation of stepwise sparse regression (SSR) (72) to 
minimize the objective function:

∥ X
�
k − �

(

Xk ,Uk

)

bk ∥
2
2
+ � ∥ bk ∥

2
2
,

where each element of the coefficient vector B is regularized with the L2 ridge 
regression value � in the penalty term. We chose � = 0.2 for all analyses (simu-
lations and empirical data). Selecting the value of � is crucial as it determines the 
trade-off between accuracy and parsimony; it is a hyperparameter that should be 
tuned by the modeler. On each iteration of the minimization procedure, SINDy 
first solves a standard least square regression to obtain a tentative, nonsparse 
solution b:

b = argmin
bk ∈ℝK

∥ X
�
k − �

(

Xk ,Uk

)

bk ∥
2
2
.

All possible b are considered, each with one coefficient set to zero, and the solu-
tion b with the smallest residual error is selected. Least-squares regression is then 
again performed on the remaining degrees of freedom. This process continues 
until there is only one coefficient remaining. Next, we iterate in reverse order 
over the history of solutions starting from the simplest solution where all but 
one coefficient is set to 0. We continue to add non-0 coefficients back to the 
model until the next change in residual error is less than 0.05 times the previous 
iteration’s residual error, at which point the process terminates, providing a sparse 
solution vector B. This provides a solution that is most parsimonious with the least 
loss. Like � , this multiplier of 0.05 is also a hyperparameter and can be tuned 
to select a sparsity level for the solution that neither under- or overfits the data.

Simulations. The first step of any SINDy analysis is collecting or simulating data 
to populate the time-series observational data X and U. To investigate the appli-
cability of SINDy in recovering the governing equations of established RL models, 
we generated synthetic data through simulations. We selected well-known RL 

models—the Rescorla–Wagner model and variants—as the basis for generating the 
data. See SI Appendix, Equation Recovery from Simulated Data for details. Our 
simulated agents estimated the probability of reward as X. The history of reward 
and trial number were represented as separate columns in U. From these obser-
vations, we used SINDy to calculate X′ as the matrix of discrete-time variables 
xk shifted xk+1. To ensure that SINDy’s solution B was interpretable, we provided 
SINDy with the following matrix of candidate functions:

� (X ,U ) =

[

Q, r , t,Q2, t2,Q× r ,Q× t, r× t,
1

t+100
, e−

t

30 , e−
t

20 ⋯

]

 
[

⋯ e
−

t

10 ,
Q

t+100
,Q×e−

t

30 ,Q×e−
t

20 ,Q×e−
t

10 ,
r

t+100
, |r−Q|,

|

|

|

r−Q
2|
|

|

⋯

]

 [
⋯ r×e−

t

30 , r×e−
t

20 , r×e−
t

10 ,
t

t+100
, t×e−

t

30 , t× ×e−
t

20 , t×e−
t

10 ⋯

]

.

These functions were chosen since they provide necessary components to allow 
SINDy to discover existing theories of learning. Of course, SINDy can also find 
novel combinations of these candidate functions. Q and r are the building blocks 
for the model and serve as basic variables for delta-updating rules (2) and as 
changes may vary over time we also added t as a potential variable. A few decay 
rates (e.g., −t/10, −t/20) were chosen to allow for a variety of exponential shapes. 
We initialized the model with linear terms to allow for a classic Rescorla–Wagner 
model. We also introduced quadratic terms as we wanted to test whether changes 
in prediction of Q or in the evaluation of r may not be linear, in line with the notion 
that stimuli is represented by individuals with some form of power transformation 
(73). We also wanted to examine whether the two terms, Q and r, interact with 
each other or with time, and whether the absolute difference between Q and r 
might modulate learning. Finally, we wanted to allow changes in both Q and r to 
decay at different rates. As can be seen from this list, we were conservative in our 
function choices in order to make sure that the resulting model was interpretable. 
Future work may use other terms in line with the researcher’s goals and evaluation 
of the appropriate relationship between variables.

Phase 1: Equation Discovery from Empirical Probability Estimates.
Participants. All experiments received IRB approval from Harvard Business 
School (IRB22-0546) and informed consent was obtained from all research par-
ticipants. In setting our sample size for Study 1, we decided to start with a large 
sample of 500 participants in order to determine the appropriate sample required 
for SINDy to make accurate predictions. We recruited participants through Prolific. 
Participants were paid $4 for their participation in the study in addition to $.03 for 
every time that their estimate was within 5% of the true reward rate. Participants 
were given attention checks to ensure data quality. On the first and fiftieth trials, 
participants were asked to type a predetermined word. On the second trial, and 
every twenty trials thereafter, participants were asked to respond to the slider 
scale with a specific percentage. On these attention check trials, participants were 
instead prompted with “This is an attention check. Please move the slider to 
_%,” where the percentage was a number between 0 and 100. Participants who 
failed either of the word typing checks or more than 2 of the slider checks were 
excluded from analysis. Because we assumed that some participants would not 
be able to complete the task, we recruited a larger number of participants than 
required N = 543. Our exclusion criteria were conditioned on attention checks 
(Attention Checks and Exclusion Criteria). We removed three participants for failed 
word typing checks and 85 for failed slider checks, for a final sample of N = 455  
(men: 216, women: 216, other or refused to answer: 23; age, M = 36.25,  
SD = 12.94).

After establishing the results from Study 1, we conducted an analysis to 
test the appropriate sample size required for SINDy to capture the appropriate 
model. We randomly sampled participants from Study 1 to find the smallest N 
necessary to reliably recover the Quadratic Q-weighted model. 100 iterations 
of this sampling procedure suggested that ~200 participants were enough for 
SINDy to reliably capture the model. In Study 2, we therefore aimed for N = 200.  
We again used Prolific for recruitment and paid participants the same sum as 
in Study 1. Our initial sample was 206. We used the same selection criteria 
for exclusions. We removed 29 participants for failed slider checks, for a final 
sample was N = 177 (Men: 87, Women: 85, other or refused to answer: 5; Age,  
M = 37.88, SD = 12.06).D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 "

H
A

R
V

A
R

D
 U

N
IV

E
R

SI
T

Y
, C

A
B

O
T

 S
C

IE
N

C
E

 L
IB

R
A

R
Y

" 
on

 J
ul

y 
31

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
79

.1
77

.1
39

.1
07

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2413441122#supplementary-materials


10 of 11   https://doi.org/10.1073/pnas.2413441122� pnas.org

Task. We used jsPsych (74) to conduct our study. Participants logged in and 
were told to imagine that they are inspecting a factory that produces phones. 
The factory produces phones one at a time and will then be inspected by the 
participant. Participants were told that the phone would either be working or 
defective. Participants were told that they are asked to estimate the probability 
that the next phone will be a working phone (Fig. 2). After a single practice trial, 
participants completed 100 trials of the task. Participants were first presented 
with an inspection slide, depicting a factory and a phone with a “?” printed on 
it. Participants were to click a button labeled “Inspect” below the images with-
out any time constraints. After clicking the Inspect button the phone with the 
? printed on it was revealed to either be working with a green check mark, or 
defective with a red “X.” Participants were required to observe this feedback screen 
for 3 s before they could advance the page. On the following slide, participants 
were asked to respond on a slider scale from 0 to 100% what they believed the 
probability was that the next phone would be a working phone. Participants had 
to move the slider from its initial value (50%) in order to make their prediction. 
Participants were given as much time as they needed to make this judgment, but 
were required to wait 3 s before they could respond. This completed a trial and 
was repeated for a total 100 trials. A fixation cross was presented for 1 s between 
trials. After completing the task, participants were sent to a Qualtrics survey to 
fill in their demographics.
Measures. When participants completed the learning task, they were asked to 
estimate the probability that the next phone will be defected. After completing 
the task, participants filled out a TIPI 10-item personality measure (75) and a short 
demographics survey in which they were asked for their name, age, gender, race, 
ethnicity, first language, political affiliation, citizenship, nation of birth, annual 
income, and email address. See SI Appendix for full analysis of demographics.

Phase 2: Evaluating Decision Models by Assuming the Quadratic Q-
Weighted Model in Existing Datasets.
Paper selection. We identified papers and datasets for reanalysis using the 
Niv Lab OpenData repository (https://nivlab.github.io/opendata/). Tags “2-arm 
bandit,” “restless bandit,” and “two-step” were considered. Criteria for reanalysis 
included 1) having freely accessible trial-level data, 2) having freely accessible 
code for model fitting and analysis, 3) the use of a Rescorla–Wagner delta-
updating rule nested within the fitted model, and 4) association with a pub-
lished paper. Many datasets did not meet the criteria, narrowing our search to 
the following nine datasets:

Kool et al., 2017 Experiments 1 & 2 (51). Published in Psychological Science 
(https://osf.io/yg82m/). The goal of this project was to examine whether people 
choose between model-free versus model-based control based on a cost–benefit 
analysis. The task was based on the Daw two-step decision making task (52). 
Participants made a first choice between two spaceships (green or blue), each 
leading to two planets with different probabilities in each of the studies (red, or 
purple). In Study 1, the probability of getting to a certain planet with a certain ship 
was always 100%. In Study 2 the probability of getting to one of the two planets 
was always 70% for each spaceship. When they arrived at the planet, participants 

met either one alien (Experiment 1) or chose one of two aliens (Experiment 2) 
who gave them a reward. Aliens were either in a good or a bad part of a mine and 
the probability of quality of their reward changed over time (drift rate in reward). 
In both studies, the researchers manipulated the size of the reward (stakes: 1 
point or 5 points).

Lefebvre et al., 2017 Experiments 1 & 2 (76). Published in Nature Human 
Behavior; Palminteri et  al., 2017 Experiment 1 (77). Published in PLOS 
Computational Biology; and Chambon et al., 2020 Experiment 4 (66). Published 
in Nature Human Behavior. Each of these datasets and analysis code were 
acquired from a meta-analytic study, Palminteri, 2023 (78) (https://github.com/
spalminteri/conf-bias-meta-analysis). We followed the models of Palminteri, 
2023 for reanalyzing each of these four datasets. Shared among the authors was 
an interest in the confirmation bias hypothesis, in which a person learns more 
from positive reinforcement that supports their preexisting biases than they 
do negative reinforcement disproving their beliefs. The tasks were all variants 
of a simple two-armed bandit. Participants chose between two alternatives 
presented as symbols and either received or did not receive reward. Each 
bandit had a predesignated probability of reward but in all tasks, participants 
observed the outcome of their chosen symbol, but received no information 
from the unchosen symbol. Lefebvre et al., 2017 Experiments 1 & 2 used prob-
abilities 25%/75%, Chambon et al., 2020 Experiment 4 used 30%/70%, and 
Palminteri et al. Experiment 1 used 50%/50%, 25%/75%, and a 17%/83%. These 
probabilities reversed halfway through the task, depending on assignment to 
experimental conditions.

Decker et al., 2016 (79). Published in Psychological Science; Potter et al., 2017 
(80). Published in Developmental Cognitive Neuroscience; and Nussenbaum 
et al., 2020 (81) Published in Collabra: Psychology. Each of these three datasets 
and analysis code were acquired from a reanalysis conducted by Nussenbaum 
et al., 2020 (https://osf.io/we89v/). The authors all investigated the emergence 
of model-based control across development, using the classic version of the Two-
Step task as a propensity measure of model-based control. The task was identical 
to the version used in Kool et al., 2017 Experiment 2, without manipulating the 
size of reward.

Data, Materials, and Software Availability. All simulation and empirical data 
are available on the Open Science Framework here: https://osf.io/aeujf/?view_
only=88b2b75499f54a3895502fc353f4d244 (82). All analysis scripts and mod-
eling code are available on GitHub here: https://github.com/GoldenbergLab/
analysis-rl-sindy-kyle (83).

Author affiliations: aDepartment of Psychological Sciences, Case Western Reserve 
University, Cleveland, OH 44106; bBooth School of Business, University of Chicago, Chicago, 
IL 60637; cDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts 
Institute of Technology, Cambridge, MA 02139; dDepartment of Psychology, Harvard 
University, Cambridge, MA 02138; eGraduate School of Business, Stanford University, 
Stanford CA 94305; fHarvard Business School, Harvard University, Boston, MA 02163; and 
gDigital, Data and Design Institute, Harvard University, Cambridge, MA 02138

1.	 O. Guest, A. E. Martin, How computational modeling can force theory building in psychological 
science. Perspect. Psychol. Sci. 16, 789–802 (2021).

2.	 R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction (MIT Press, 1998).
3.	 T. Akam, M. E. Walton, What is dopamine doing in model-based reinforcement learning? Curr. Opin. 

Behav. Sci. 38, 74–82 (2021).
4.	 B. B. Doll, D. A. Simon, N. D. Daw, The ubiquity of model-based reinforcement learning. Curr. Opin. 

Neurobiol. 22, 1075–1081 (2012).
5.	 S. J. Gershman, N. Uchida, Believing in dopamine. Nat. Rev. Neurosci. 20, 703–714  

(2019).
6.	 E. O. Neftci, B. B. Averbeck, Reinforcement learning in artificial and biological systems. Nat. Mach. 

Intell. 1, 133–143 (2019).
7.	 Y. Niv, Reinforcement learning in the brain. J. Math. Psychol. 53, 139–154 (2009).
8.	 M. Campbell, A. J. Hoane, F. Hsu, Deep Blue. Artif. Intell. 134, 57–83 (2002).
9.	 D. Silver et al., Mastering the game of Go with deep neural networks and tree search. Nature 529, 

484–489 (2016).
10.	 O. Vinyals et al., Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 

575, 350–354 (2019).
11.	 J. Von Neumann, O. Morgenstern, Theory of Games and Economic Behavior (Princeton University 

Press, 1944).
12.	 R. D. Luce, On the possible psychophysical laws. Psychol. Rev. 66, 81–95 (1959).
13.	 A. Tversky, D. Kahneman, Prospect theory: An analysis of decision under risk. Econometrica 47, 

263–291 (1979).
14.	 D. Prelec, The probability weighting function. Econometrica 66, 497–527 (1998).

15.	 R. Gonzalez, G. Wu, On the shape of the probability weighting function. Cogn. Psychol. 38, 129–166 
(1999).

16.	 J. C. Denrell, Reference-dependent risk sensitivity as rational inference. Psychol. Rev. 122, 461–484 
(2015).

17.	 D. U. Wulff, M. Mergenthaler-Canseco, R. Hertwig, A meta-analytic review of two modes of learning 
and the description-experience gap. Psychol. Bull. 144, 140–176 (2018).

18.	 A. Glöckner, B. E. Hilbig, F. Henninger, S. Fiedler, The reversed description-experience gap: 
Disentangling sources of presentation format effects in risky choice. J. Exp. Psychol. Gen. 145, 
486–508 (2016).

19.	 R. A. Rescorla, A. R. Wagner, “A theory of Pavlovian conditioning: Variations in the effectiveness of 
reinforcement and nonreinforcement” in Classical Conditioning II: Current Research and Theory, A. 
H. Black, W. F. Prokasy, Eds. (Appleton-Century-Crofts, 1972).

20.	 Y. Niv, J. A. Edlund, P. Dayan, J. P. O’Doherty, Neural prediction errors reveal a risk-sensitive 
reinforcement-learning process in the human brain. J. Neurosci. 32, 551–562 (2012).

21.	 C. M. Constantinople, A. T. Piet, C. D. Brody, An analysis of decision under risk in rats. Curr. Biol. 29, 
2066–2074.e5 (2019).

22.	 A. Tymula et al., Dynamic prospect theory: Two core decision theories coexist in the gambling 
behavior of monkeys and humans. Sci. Adv. 9, eade7972 (2023).

23.	 M. K. Eckstein, L. Wilbrecht, A. G. Collins, What do reinforcement learning models measure? 
Interpreting model parameters in cognition and neuroscience. Curr. Opin. Behav. Sci. 41, 128–137 
(2021).

24.	 J. Horrocks, C. T. Bauch, Algorithmic discovery of dynamic models from infectious disease data. Sci. 
Rep. 10, 7061 (2020).D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 "

H
A

R
V

A
R

D
 U

N
IV

E
R

SI
T

Y
, C

A
B

O
T

 S
C

IE
N

C
E

 L
IB

R
A

R
Y

" 
on

 J
ul

y 
31

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
79

.1
77

.1
39

.1
07

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2413441122#supplementary-materials
https://nivlab.github.io/opendata/
https://osf.io/yg82m/
https://github.com/spalminteri/conf-bias-meta-analysis
https://github.com/spalminteri/conf-bias-meta-analysis
https://osf.io/we89v/
https://osf.io/aeujf/
https://osf.io/aeujf/
https://github.com/GoldenbergLab/analysis-rl-sindy-kyle
https://github.com/GoldenbergLab/analysis-rl-sindy-kyle


PNAS  2025  Vol. 122  No. 31 e2413441122� https://doi.org/10.1073/pnas.2413441122 11 of 11

25.	 L. K. Bartlett, A. Pirrone, N. Javed, F. Gobet, Computational scientific discovery in psychology. 
Perspect. Psychol. Sci. 18, 178–189 (2023).

26.	 A. Almaatouq et al., Beyond playing 20 questions with nature: Integrative experiment design in the 
social and behavioral sciences. Behav. Brain Sci. 47, 1–55 (2022), 10.1017/S0140525X22002874.

27.	 M. Fintz, M. Osadchy, U. Hertz, Using deep learning to predict human decisions and using cognitive 
models to explain deep learning models. Sci. Rep. 12, 4736 (2022).

28.	 J. M. Hofman et al., Integrating explanation and prediction in computational social science. Nature 
595, 181–188 (2021).

29.	 L. Ji-An, M. K. Benna, M. G. Mattar, Automatic discovery of cognitive strategies with 
tiny recurrent neural networks. bioRxiv [Preprint] (2023). https://www.biorxiv.org/
content/10.1101/2023.04.12.536629v2 (Accessed 27 July 2023).

30.	 P. I. Jaffe, R. A. Poldrack, R. J. Schafer, P. G. Bissett, Modelling human behavior in cognitive tasks with 
latent dynamical systems. Nat. Hum. Behav. 7, 986–1000 (2023).

31.	 N. A. Roy, J. H. Bak, A. Akrami, C. D. Brody, J. W. Pillow, Extracting the dynamics of behavior in 
sensory decision-making experiments. Neuron 109, 597–610.e6 (2021).

32.	 K. J. Miller, M. Eckstein, M. M. Botvinick, Z. Kurth-Nelson, Cognitive model discovery 
via disentangled RNNs. bioRxiv [Preprint] (2023). https://www.biorxiv.org/
content/10.1101/2023.06.23.546250v1 (Accessed 16 July 2023).

33.	 M. Agrawal, J. C. Peterson, T. L. Griffiths, Scaling up psychology via scientific regret minimization. 
Proc. Natl. Acad. Sci. U.S.A. 117, 8825–8835 (2020).

34.	 J. Bongard, H. Lipson, Automated reverse engineering of nonlinear dynamical systems. Proc. Natl. 
Acad. Sci. U.S.A. 104, 9943–9948 (2007).

35.	 M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data. Science 324, 81–85 
(2009).

36.	 E. Kaiser, J. N. Kutz, S. L. Brunton, Sparse identification of nonlinear dynamics for model predictive 
control in the low-data limit. Proc. R. Soc. A., Math., Phys. Eng. Sci. 474, 20180335 (2018).

37.	 N. M. Mangan, J. N. Kutz, S. L. Brunton, J. L. Proctor, Model selection for dynamical systems via 
sparse regression and information criteria. Proc. R. Soc. A., Math., Phys. Eng. Sci. 473, 20170009 
(2017).

38.	 S. H. Rudy, S. L. Brunton, J. L. Proctor, J. N. Kutz, Data-driven discovery of partial differential 
equations. Sci. Adv. 3, e1602614 (2017).

39.	 E. P. Alves, F. Fiuza, Data-driven discovery of reduced plasma physics models from fully kinetic 
simulations. Phys. Rev. Res. 4, 033192 (2022).

40.	 K. Kaheman, E. Kaiser, B. Strom, J. N. Kutz, S. L. Brunton, Learning discrepancy models from 
experimental data. arXiv [Preprint] (2019). https://arxiv.org/abs/1909.08574 (Accessed 18 April 
2023).

41.	 Z. Lai, S. Nagarajaiah, Sparse structural system identification method for nonlinear dynamic systems 
with hysteresis/inelastic behavior. Mech. Syst. Signal Process. 117, 813–842 (2019).

42.	 M. Sorokina, S. Sygletos, S. Turitsyn, Sparse identification for nonlinear optical communication 
systems: Sino method. Opt. Express 24, 30433–30443 (2016).

43.	 N. M. Mangan, S. L. Brunton, J. L. Proctor, J. N. Kutz, Inferring biological networks by sparse 
identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2, 52–63 
(2016).

44.	 R. Dale, H. S. Bhat, Equations of mind: Data science for inferring nonlinear dynamics of  
socio-cognitive systems. Cogn. Syst. Res. 52, 275–290 (2018).

45.	 A. M. Bornstein, M. W. Khaw, D. Shohamy, N. D. Daw, Reminders of past choices bias decisions for 
reward in humans. Nat. Commun. 8, 15958 (2017).

46.	 N. D. Daw, J. P. O’Doherty, P. Dayan, B. Seymour, R. J. Dolan, Cortical substrates for exploratory 
decisions in humans. Nature 441, 876–879 (2006).

47.	 M. Speekenbrink, E. Konstantinidis, Uncertainty and exploration in a restless bandit problem.  
Top. Cogn. Sci. 7, 351–367 (2015).

48.	 J. P. O’Doherty, P. Dayan, K. Friston, H. Critchley, R. J. Dolan, Temporal difference models and reward-
related learning in the human brain. Neuron 38, 329–337 (2003).

49.	 B. Carpenter et al., Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32  
(2017).

50.	 P. Piray, N. D. Daw, A simple model for learning in volatile environments. PLoS Comput. Biol. 16, 
e1007963 (2020).

51.	 W. Kool, S. J. Gershman, F. A. Cushman, Cost-benefit arbitration between multiple reinforcement-
learning systems. Psychol. Sci. 28, 1321–1333 (2017).

52.	 N. D. Daw, S. J. Gershman, B. Seymour, P. Dayan, R. J. Dolan, Model-based influences on humans’ 
choices and striatal prediction errors. Neuron 69, 1204–1215 (2011).

53.	 W. Kool, F. A. Cushman, S. J. Gershman, When does model-based control pay off?. PLoS Comput. 
Biol. 12, e1005090 (2016).

54.	 A. C. Courville, N. D. Daw, D. S. Touretzky, Bayesian theories of conditioning in a changing world. 
Trends Cogn. Sci. 10, 294–300 (2006).

55.	 F. Meyniel, S. Dehaene, Brain networks for confidence weighting and hierarchical inference during 
probabilistic learning. Proc. Natl. Acad. Sci. U.S.A. 114, E3859–E3868 (2017).

56.	 J.-Q. Zhu, A. N. Sanborn, N. Chater, The Bayesian sampler: Generic Bayesian inference causes 
incoherence in human probability judgments. Psychol. Rev. 127, 719–748 (2020).

57.	 J.-Q. Zhu, J. Sundh, J. Spicer, N. Chater, A. N. Sanborn, The autocorrelated Bayesian sampler:  
A rational process for probability judgments, estimates, confidence intervals, choices, confidence 
judgments, and response times. Psychol. Rev. 131, 456–493 (2024).

58.	 O. W. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics.  
Proc. R. Soc. A, Math., Phys. Eng. Sci. 115, 700–721 (1927).

59.	 J. C. Peterson, D. D. Bourgin, M. Agrawal, D. Reichman, T. L. Griffiths, Using large-scale experiments 
and machine learning to discover theories of human decision-making. Science 372, 1209–1214 
(2021).

60.	 M. K. Ho et al., People construct simplified mental representations to plan. Nature 606, 129–136 
(2022).

61.	 R. X. D. Hawkins, N. D. Goodman, R. L. Goldstone, The emergence of social norms and conventions. 
Trends Cogn. Sci. 23, 158–169 (2019).

62.	 J. Gratch, S. Marsella, “Tears and fears: Modeling emotions and emotional behaviors in synthetic 
agents” in Proceedings of the Fifth International Conference on Autonomous Agents (2001),  
pp. 278–285, https://doi.org/10.1145/375735.376309.

63.	 J. Ullman, Structural equation modeling: Reviewing the basics and moving forward. J. Pers. Assess. 
87, 35–50 (2006).

64.	 S. J. Gershman, A unifying probabilistic view of associative learning. PLoS Comput. Biol. 11, 1–20 
(2015).

65.	 B. Seymour et al., Temporal difference models describe higher-order learning in humans. Nature 
429, 664–667 (2004).

66.	 V. Chambon et al., Information about action outcomes differentially affects learning from  
self-determined versus imposed choices. Nat. Hum. Behav. 4, 1067–1079 (2020).

67.	 M. R. Nassar, R. C. Wilson, B. Heasly, J. I. Gold, An approximately bayesian delta-rule model explains 
the dynamics of belief updating in a changing environment. J. Neurosci. 30, 12366–12378 (2010).

68.	 M. R. Nassar et al., Rational regulation of learning dynamics by pupil-linked arousal systems. Nat. 
Neurosci. 15, 1040–1046 (2012).

69.	 B. M. de Silva et al., PySINDy: A Python package for the sparse identification of nonlinear dynamics 
from data. arXiv [Preprint] (2020). https://arxiv.org/abs/2004.08424 (Accessed 27 July 2023).

70.	 A. A. Kaptanoglu et al., PySINDy: A comprehensive Python package for robust sparse system 
identification. JOSS 7, 3994 (2022).

71.	 S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equations from data by sparse 
identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U.S.A. 113, 3932–3937 (2016).

72.	 L. Boninsegna, F. Nüske, C. Clementi, Sparse learning of stochastic dynamical equations. J. Chem. 
Phys. 148, 241723 (2018).

73.	 S. S. Stevens, On the psychophysical law. Psychol. Rev. 64, 153–181 (1957).
74.	 J. R. de Leeuw, R. A. Gilbert, B. Luchterhandt, JsPsych: Enabling an open-source collaborative 

ecosystem of behavioral experiments. J. Open Source Softw. 8, 5351 (2023).
75.	 S. D. Gosling, P. J. Rentfrow, W. B. Swann, A very brief measure of the big-five personality domains. 

J. Res. Pers. 37, 504–528 (2003).
76.	 G. Lefebvre, M. Lebreton, F. Meyniel, S. Bourgeois-Gironde, S. Palminteri, Behavioural and neural 

characterization of optimistic reinforcement learning. Nat. Hum. Behav. 1, 1–9 (2017).
77.	 S. Palminteri, G. Lefebvre, E. J. Kilford, S.-J. Blakemore, Confirmation bias in human reinforcement 

learning: Evidence from counterfactual feedback processing. PLoS Comput. Biol. 13, e1005684 
(2017).

78.	 S. Palminteri, Choice-confirmation bias and gradual perseveration in human reinforcement 
learning. Behav. Neurosci. 137, 78–88 (2023).

79.	 J. H. Decker, A. R. Otto, N. D. Daw, C. A. Hartley, From creatures of habit to goal-directed learners: 
Tracking the developmental emergence of model-based reinforcement learning. Psychol. Sci. 27, 
848–858 (2016).

80.	 T. C. S. Potter, N. V. Bryce, C. A. Hartley, Cognitive components underpinning the development of 
model-based learning. Dev. Cogn. Neurosci. 25, 272–280 (2017).

81.	 K. Nussenbaum, M. Scheuplein, C. V. Phaneuf, M. D. Evans, C. A. Hartley, Moving developmental 
research online: Comparing in-lab and web-based studies of model-based reinforcement learning. 
Psychol. Collabra 6, 17213 (2020).

82.	 K. J. LaFollette, J. Yuval, R. Schurr, D. Melnikoff, A. Goldenberg, Data from “Data-driven equation 
discovery reveals nonlinear reinforcement learning in humans.” Open Science Framework. https://
osf.io/aeujf/. Deposited 12 November 2023.

83.	 K. J. LaFollette, J. Yuval, R. Schurr, D. Melnikoff, A. Goldenberg, Analysis code from “Data-driven 
equation discovery reveals nonlinear reinforcement learning in humans.” GitHub. https://github.
com/GoldenbergLab/analysis-rl-sindy-kyle. Deposited 24 April 2025.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
H

A
R

V
A

R
D

 U
N

IV
E

R
SI

T
Y

, C
A

B
O

T
 S

C
IE

N
C

E
 L

IB
R

A
R

Y
" 

on
 J

ul
y 

31
, 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

79
.1

77
.1

39
.1

07
.

https://doi.org/10.1017/S0140525X22002874
https://www.biorxiv.org/content/10.1101/2023.04.12.536629v2
https://www.biorxiv.org/content/10.1101/2023.04.12.536629v2
https://www.biorxiv.org/content/10.1101/2023.06.23.546250v1
https://www.biorxiv.org/content/10.1101/2023.06.23.546250v1
http://arxiv.org/abs/1909.08574
https://doi.org/10.1145/375735.376309
http://arxiv.org/abs/2004.08424
https://osf.io/aeujf/
https://osf.io/aeujf/
https://github.com/GoldenbergLab/analysis-rl-sindy-kyle
https://github.com/GoldenbergLab/analysis-rl-sindy-kyle

	Data-driven equation discovery reveals nonlinear reinforcement learning in humans
	Significance
	Results
	Phase 1: Equation Discovery from Empirical Probability Estimates.
	Phase 2: Evaluating Decision Models by assuming the Quadratic Q-Weighted Model in Existing Datasets.

	Discussion
	Limitations and Future Directions
	Methods
	Explaining SINDy.
	Simulations.
	Phase 1: Equation Discovery from Empirical Probability Estimates.
	Participants.
	Task.
	Measures.

	Phase 2: Evaluating Decision Models by Assuming the Quadratic Q-Weighted Model in Existing Datasets.
	Paper selection.


	Data, Materials, and Software Availability
	Supporting Information
	Anchor 26



